Abstract

At present, power systems based on gas turbines are mainly used for electricity and heat generation. Gas turbines are used in industrial and institutional applications due to high-temperature exhaust, which can be used for heating, drying, or process steam production. The combined cycle gas turbine plants are a mature technology with high reliability and offering rapid response to changing demand for electricity and heat. The combination of a gas turbine with a heat recovery system and a heat accumulator makes the combined heat and power (CHP) plant a flexible unit. The paper presents the optimization tool for the planning process of electricity and heat production in the gas-fired CHP plant with a heat accumulator. The detailed mathematical model of the analyzed cogeneration plant was developed with the EBSILON®Professional and verified based on the results from on-site tests and warranty measurements. The implemented optimization algorithm is used to maximize the profits of the CHP plant operation. The presented solution is based on an evolutionary algorithm. The optimization algorithm is applied to the production determination for the day-ahead planning horizon, with 1-h time step. The obtained results show that the developed optimization model is a reliable and efficient tool for production planning in a CHP plant with gas turbines. The comparative exergy analysis for different technologies of heat recovery from gas turbine exhaust gases was performed to evaluate the quality of the energy conversion process in the CHP plant.

References

References
1.
IEA
,
2018
,
Global Energy & CO2 Status Report
,
International Energy Agency
,
Paris
.
2.
Jorgenson
,
A. K.
,
Longhofer
,
W.
,
Grant
,
D.
,
Sie
,
A.
, and
Giedraitis
,
V.
,
2017
, “
The Effects of Economic and Political Integration on Power Plants’ Carbon Emissions in the Post-Soviet Transition Nations
,”
Environ. Res. Lett.
,
12
(
4),
p.
044009
. 10.1088/1748-9326/aa650b
3.
Szargut
,
J.
,
2005
,
Exergy Method: Technical and Ecological Applications
,
WIT Press
,
Southampton, UK
.
4.
Liu
,
M.
,
Shi
,
Y.
, and
Fang
,
F.
,
2014
, “
Combined Cooling. Heating and Power Systems: A Survey
,”
Renew. Sustain. Energy Rev.
,
35
, pp.
1
22
. 10.1016/j.rser.2014.03.054
5.
Martens
,
A.
,
1998
, “
The Energetic Feasibility of CHP Compared to the Separate Production of Heat and Power
,”
Appl. Therm. Eng.
,
18
(
11
), pp.
935
946
. 10.1016/S1359-4311(98)00026-X
6.
Szargut
,
J.
,
Ziębik
,
A.
, and
Stanek
,
W.
,
2002
, “
Depletion of the Non-Renewable Natural Exergy Resources as a Measure of the Ecological Cost
,”
Energy. Convers. Manage.
,
43
(
9
), pp.
1149
1163
. 10.1016/S0196-8904(02)00005-5
7.
Santos
,
A. C.
,
Rosales-Asensio
,
E.
,
Borge-Diez
,
D.
, and
Blanes-Peiro
,
J. J.
,
2016
, “
District Heating and Cogeneration in the EU-28: Current Situation, Potential and Proposed Energy Strategy for Its Generalization
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
621
639
. 10.1016/j.rser.2016.05.004
8.
Euroheat and Power
,
2015
, “
District Heating and Cooling Country by Country—Survey 2015
,”
Euroheat and Power
, ENER 019.
9.
Madejski
,
P.
,
Żymełka
,
P.
,
Węzik
,
R.
, and
Kubiczek
,
H.
,
2017
, “
Gas Fired Plant Modeling for Monitoring and Optimization of Electricity and Heat Production
,”
J. Power Technol.
,
97
(
5
), pp.
455
462
.
10.
Zhang
,
G.
,
Zheng
,
J.
,
Yang
,
Y.
, and
Liu
,
W.
,
2016
, “
Thermodynamic Performance Simulation and Concise Formulas for Triple-Pressure Reheat HRSG of Gas-Steam Combined Cycle Under Off-Design Condition
,”
Energy. Convers. Manage.
,
122
, pp.
372
385
. 10.1016/j.enconman.2016.05.088
11.
Gonzalez-Salazar
,
M. A.
,
Kristen
,
T.
, and
Prchlik
,
L.
,
2017
, “
Review of the Operational Flexibility and Emissions of Gas- and Coal-Fired Power Plants in a Future With Growing Renewables
,”
Renew. Sustain. Energy Rev.
,
81
(
1
), pp.
1497
1513
. 10.1016/j.rser.2017.05.278
12.
Fang
,
T.
, and
Lahdelma
,
R.
,
2016
, “
Optimization of Combined Heat and Power Production With Heat Storage Based on Sliding Time Window Method
,”
Appl. Energy
,
162
, pp.
723
732
. 10.1016/j.apenergy.2015.10.135
13.
Nuytten
,
T.
,
Claessens
,
B.
,
Paredis
,
K.
,
Van Bael
,
J.
, and
Six
,
D.
,
2013
, “
Flexibility of a Combined Heat and Power System With Thermal Energy Storage for District Heating
,”
Appl. Energy
,
104
, pp.
583
591
. 10.1016/j.apenergy.2012.11.029
14.
Widen
,
J.
, and
Wäckelgard
,
E.
,
2010
, “
A High-Resolution Stochastic Model of Domestic Activity Patterns and Electricity Demand
,”
Appl. Energy
,
87
(
6
), pp.
1880
1892
. 10.1016/j.apenergy.2009.11.006
15.
Middelberg
,
A.
,
Zhang
,
J.
, and
Xia
,
X.
,
2009
, “
An Optimal Control Model for Load Shifting—With Application in the Energy Management of a Colliery
,”
Appl. Energy
,
86
(
7–8
), pp.
1266
1273
. 10.1016/j.apenergy.2008.09.011
16.
Kumbartzky
,
N.
,
Schacht
,
M.
,
Schulz
,
K.
, and
Werners
,
B.
,
2017
, “
Optimal Operation of a CHP Plant Participating in the German Electricity Balancing and Day-Ahead Spot Market
,”
Eur. J. Oper. Res.
,
261
(
1
), pp.
390
404
. 10.1016/j.ejor.2017.02.006
17.
Alipour
,
M.
,
Zare
,
K.
, and
Mohammadi-Ivatloo
,
B.
,
2014
, “
Short-Term Scheduling of Combined Heat and Power Generation Units in the Presence of Demand Response Programs
,”
Energy
,
71
, pp.
289
301
. 10.1016/j.energy.2014.04.059
18.
Moghaddam
,
I. M.
,
Saniei
,
M.
, and
Mashhour
,
E.
,
2016
, “
A Comprehensive Model for Self-Scheduling an Energy Hub to Supply Cooling. Heating and Electrical Demands of a Building
,”
Energy
,
94
, pp.
157
170
. 10.1016/j.energy.2015.10.137
19.
Bornapour
,
M.
,
Hooshmand
,
R. A.
,
Khodabakhshian
,
A.
, and
Parastegari
,
M.
,
2016
, “
Optimal Coordinated Scheduling of Combined Heat and Power Fuel Cell, Wind, and Photovoltaic Units in Micro Grids Considering Uncertainties
,”
Energy
,
177
, pp.
176
189
. 10.1016/j.energy.2016.10.072
20.
Trespalacios
,
F.
, and
Grossmann
,
I. E.
,
2014
, “
Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Applications in Process Systems Engineering
,”
Chem. Ing. Tech.
,
86
(
7
), pp.
991
1012
. 10.1002/cite.201400037
21.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2017
, “
Increasing the Flexibility of Combined Heat and Power Plants With Heat Pumps and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020907
. 10.1115/1.4038461
22.
Yokoyama
,
R.
, and
Ito
,
K.
,
1995
, “
Optimal Operational Planning of Cogeneration Systems With Thermal Storage by the Decomposition Method
,”
ASME J. Energy Resour. Technol.
,
117
(
4
), pp.
337
342
. 10.1115/1.2835432
23.
Yokoyama
,
R.
, and
Ito
,
K.
,
1999
, “
Optimal Operation of a Cogeneration Plant in Consideration of Equipment Startup/Shutdown Cost
,”
ASME J. Energy Resour. Technol.
,
121
(
4
), pp.
254
261
. 10.1115/1.2795991
24.
Ito
,
K.
,
Shiba
,
T.
, and
Yokoyama
,
R.
,
1994
, “
Optimal Operation of a Cogeneration Plant in Combination With Electric Heat Pumps
,”
ASME J. Energy Resour. Technol.
,
116
(
1
), pp.
56
64
. 10.1115/1.2906010
25.
Cui
,
C.
,
Yang
,
X.
,
Tian
,
F.
,
Gao
,
T.
, and
Zhu
,
Z.
,
2015
, “Optimization of a Combined Heat and Power Generation System With Ice Thermal Storage,”
Low-Carbon City and New-Type Urbanization
,
S.
Feng
,
W.
Huang
,
J.
Wang
,
M.
Wang
, and
J.
Zha
, eds.,
Springer
,
Berlin
, pp.
13
23
.
26.
Christidis
,
A.
,
Koch
,
C.
,
Pottel
,
L.
, and
Tsatsaronis
,
G.
,
2012
, “
The Contribution of Heat Storage to the Profitable Operation of Combined Heat and Power Plants in Liberalized Electricity Markets
,”
Energy
,
41
(
1
), pp.
75
82
. 10.1016/j.energy.2011.06.048
27.
Elsido
,
C.
,
Bischi
,
A.
,
Silva
,
P.
, and
Martelli
,
E.
,
2017
, “
Two-Stage MINLP Algorithm for the Optimal Synthesis and Design of Networks of CHP Units
,”
Energy
,
121
, pp.
403
426
. 10.1016/j.energy.2017.01.014
28.
Bischi
,
A.
,
Taccari
,
L.
,
Martelli
,
E.
,
Amaldi
,
E.
,
Manzolini
,
G.
,
Silva
,
P.
,
Campanari
,
S.
, and
Macchia
,
E.
,
2014
, “
A Detailed MILP Optimization Model for Combined Cooling, Heat and Power System Operation Planning
,”
Energy
,
74
, pp.
12
26
. 10.1016/j.energy.2014.02.042
29.
Zhu
,
Q.
,
Luo
,
X.
,
Zhang
,
B.
, and
Chen
,
Y.
,
2017
, “
Mathematical Modeling and Optimization of a Large-Scale Combined Cooling, Heat and Power System That Incorporates Unit Changeover and Time-of-Use Electricity Price
,”
Energy. Convers. Manage.
,
133
, pp.
385
398
. 10.1016/j.enconman.2016.10.056
30.
Rubio-Maya
,
C.
,
Uche
,
J.
, and
Martinez
,
A.
,
2011
, “
Sequential Optimization of a Polygeneration Plant
,”
Energy. Convers. Manage.
,
52
(
8–9
), pp.
2861
2869
. 10.1016/j.enconman.2011.01.023
31.
Sanaye
,
S.
, and
Hajabdollahi
,
H.
,
2015
, “
Thermo-Economic Optimization of Solar CCHP Using Both Genetic and Particle Swarm Algorithms
,”
ASME J. Sol. Energy Eng.
,
137
(1), p.
011001
. 10.1115/1.4027932
32.
Ma
,
S.
,
Zhou
,
D.
,
Zhang
,
H.
,
Weng
,
S.
, and
Shao
,
T.
,
2018
, “
Modeling and Operational Optimization Based on Energy Hubs for Complex Energy Networks With Distributed Energy Resources
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022002
. 10.1115/1.4041287
33.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2011
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011301
. 10.1115/1.4005082
34.
Kasaei
,
M. J.
,
Gandomkar
,
M.
, and
Nikoukar
,
J.
,
2017
, “
Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062003
. 10.1115/1.4037371
35.
STEAG Energy Services GmbH—System Technologies
,
2015
, “
EBSILON®Professional for Engineering and Designing Energy and Power Plant Systems
,” https://www.steag-energyservices.com.
36.
Lasdon
,
L.
,
Fox
,
R.
, and
Ratner
,
M.
,
1974
, “
Nonlinear Optimization Using the Generalized Reduced Gradient Method
,”
Rairo—Oper. Res.
,
8
, pp.
73
103
. 10.1051/ro/197408V300731
37.
Szargut
,
J.
, and
Sama
,
D.
,
1995
, “
Practical Rules of the Reduction of Exergy Losses Caused by the Thermodynamic Imperfection of Thermal Processes
,”
The 2nd International Thermal Energy Congress
,
Agadir
,
June
, pp.
782
785
.
You do not currently have access to this content.