Abstract

Solid oxide fuel cells operate at high temperature, typically in the range 650–850 °C, utilizing between 50% and 75% of fuel. The remaining fuel can be either burned in a post-combustor located downstream of the solid oxide fuel cells (SOFC) stack or partially recycled. Several of the SOFC-based power systems include recirculation which is used to supply the steam to the fuel processing unit based on steam reforming. In such a system, the recycled stream makes it possible to eliminate the supply of water from the external source. In the same time, recirculation aids in increasing the overall fuel utilization in the power system. As a result the efficiency increases by 5–12% points. The electrochemical reaction in SOFC generates a substantial amount of water by combining the hydrogen molecules with oxygen extracted from the air entering the cathodic compartments. The recycled stream contains water vapor which is circulated in the recycled loop. In the current analysis, the system for recirculation of the anodic off-gas with complete removal of water was proposed and studied. Performance of a planar cell operated with different rates of recycling was studied using the experimental setup with chiller-based recirculation. Quantification of the improvement of the efficiency was based on the analysis of the increase of voltage of cell operated at a given current density. The experimental study demonstrated that the performance of a stand-alone SOFC can be increased by 18–31%. Additionally, the numerical model was proposed to determine the performance in other operating conditions.

References

1.
Kattke
,
K. J.
,
Braun
,
R. J.
,
Colclasure
,
A. M.
, and
Goldin
,
G.
,
2011
, “
High-fidelity Stack and System Modeling for Tubular Solid Oxide Fuel Cell System Design and Thermal Management
,”
J. Power Sources
,
196
(8), pp.
3790
3802
. 10.1016/j.jpowsour.2010.12.070
2.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
Wiley
,
West Sussex, England
.
3.
US Department of Energy Office of Fossil Energy National Energy Technology Laboratory
,
2004
,
Fuel Cell Handbook
, 7th ed.,
EG G Technical Services, Inc.
4.
Xie
,
Y.
,
Ding
,
H.
, and
Xue
,
X.
,
2013
, “
Direct Methane Fueled Solid Oxide Fuel Cell Model with Detailed Reforming Reactions
,”
Chem. Eng. J.
,
228
(
July
), pp.
917
924
. 10.1016/j.cej.2013.05.084
5.
Zhou
,
Z. F.
,
Gallo
,
C.
,
Pague
,
M. B.
,
Schobert
,
H.
, and
Lvov
,
S. N.
,
2004
, “
Direct Oxidation of Jet Fuels and Pennsylvania Crude oil in a Solid Oxide Fuel Cell
,”
J. Power Sources
,
133
(
2
), pp.
181
187
. 10.1016/j.jpowsour.2003.12.044
6.
Kupecki
,
J.
,
2015
, “
Off-design Analysis of a Micro-CHP Unit with Solid Oxide Fuel Cells Fed by DME
,”
Int. J. Hydrogen Energy
,
40
(
35
), pp.
12009
12022
. 10.1016/j.ijhydene.2015.06.031
7.
Cinti
,
G.
,
Discepoli
,
G.
,
Sisani
,
E.
, and
Desideri
,
U.
,
2016
, “
SOFC Operating with Ammonia: Stack Test and System Analysis
,”
Int. J. Hydrogen Energy
,
41
(
31
), pp.
13583
13590
. 10.1016/j.ijhydene.2016.06.070
8.
Rokni
,
M.
,
2017
, “
Addressing Fuel Recycling in Solid Oxide Fuel Cell Systems Fed by Alternative Fuels
,”
Energy
,
137
(
Oct
.), pp.
1013
1025
. 10.1016/j.energy.2017.03.082
9.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2005
, “
Influence of the Anodic Recirculation Transient Behaviour on the SOFC Hybrid System Performance
,”
J. Power Sources
,
149
(
Sept
.), pp.
22
32
. 10.1016/j.jpowsour.2005.01.059
10.
Yi
,
Y.
,
Rao
,
A. D.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2005
, “
Fuel Flexibility Study of an Integrated 25kW SOFC Reformer System
,”
J. Power Sources
,
144
(
1
), pp.
67
76
. 10.1016/j.jpowsour.2004.11.068
11.
Santin
,
M.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A.
,
2010
, “
Thermoeconomic Analysis of SOFC-GT Hybrid Systems fed by Liquid Fuels
,”
Energy
,
35
(
2
), pp.
1077
1083
. 10.1016/j.energy.2009.06.012
12.
Liso
,
V.
,
Olesen
,
A. C.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2011
, “
Performance Comparison Between Partial Oxidation and Methane Steam Reforming Processes for Solid Oxide Fuel Cell (SOFC) Micro Combined Heat and Power (CHP) System
,”
Energy
,
36
(
7
), pp.
4216
4226
. 10.1016/j.energy.2011.04.022
13.
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2013
, “
Cathode–Anode Side Interaction in SOFC Hybrid Systems
,”
Appl. Energy
,
105
(
May
), pp.
369
379
. 10.1016/j.apenergy.2013.01.029
14.
Chen
,
J.
,
Li
,
J.
,
Zhou
,
D.
,
Zhang
,
H.
, and
Weng
,
S.
,
2018
, “
Control Strategy Design for a SOFC-GT Hybrid System Equipped with Anode and Cathode Recirculation Ejectors
,”
Appl. Therm. Eng.
,
132
(
Mar
.), pp.
67
79
. 10.1016/j.applthermaleng.2017.12.079
15.
Chen
,
J.
,
Liang
,
M.
,
Zhang
,
H.
, and
Weng
,
S.
,
2017
, “
Study on Control Strategy for a SOFC-GT Hybrid System with Anode and Cathode Recirculation Loops
,”
Int. J. Hydrogen Energy
,
42
(
49
), pp.
29422
29432
. 10.1016/j.ijhydene.2017.09.165
16.
Park
,
S. K.
,
Ahn
,
J. H.
, and
Kim
,
T. S.
,
2011
, “
Performance Evaluation of Integrated Gasification Solid Oxide Fuel Cell/gas Turbine Systems Including Carbon Dioxide Capture
,”
Appl. Energy
,
88
(
9
), pp.
2976
2987
. 10.1016/j.apenergy.2011.03.031
17.
Saebea
,
D.
,
Magistri
,
L.
,
Massardo
,
A.
, and
Arpornwichanop
,
A.
,
2017
, “
Cycle Analysis of Solid Oxide Fuel Cell-gas Turbine Hybrid Systems Integrated Ethanol Steam Reformer: Energy Management
,”
Energy
,
127
(
May
), pp.
743
755
. 10.1016/j.energy.2017.03.105
18.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2004
, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
,
129
(
2
), pp.
216
228
. 10.1016/j.jpowsour.2003.11.034
19.
Zhu
,
Y.
,
Cai
,
W.
,
Wen
,
C.
, and
Li
,
Y.
,
2007
, “
Fuel Ejector Design and Simulation Model for Anodic Recirculation SOFC System
,”
J. Power Sources
,
173
(
1
), pp.
437
449
. 10.1016/j.jpowsour.2007.08.036
20.
Liu
,
M.
,
Lanzini
,
A.
,
Halliop
,
W.
,
Cobas
,
V. R. M.
,
Verkooijen
,
A. H. M.
, and
Aravind
,
P. V.
,
2013
, “
Anode Recirculation Behavior of a Solid Oxide Fuel Cell System: A Safety Analysis and a Performance Optimization
,”
Int. J. Hydrogen Energy
,
38
(
6
), pp.
2868
2883
. 10.1016/j.ijhydene.2012.12.070
21.
Genc
,
O.
,
Toros
,
S.
, and
Timurkutluk
,
B.
,
2017
, “
Determination of Optimum Ejector Operating Pressures for Anodic Recirculation in SOFC Systems
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20249
20259
. 10.1016/j.ijhydene.2017.06.179
22.
Lee
,
K.
,
Kang
,
S.
, and
Ahn
,
K. Y.
,
2017
, “
Development of a Highly Efficient Solid Oxide Fuel Cell System
,”
Appl. Energy
,
205
(
Nov.
), pp.
822
833
. 10.1016/j.apenergy.2017.08.070
23.
Araki
,
T.
,
Taniuchi
,
T.
,
Sunakawa
,
D.
,
Nagahama
,
M.
,
Onda
,
K.
, and
Kato
,
T.
,
2007
, “
Cycle Analysis of low and High H2 Utilization SOFC/gas Turbine Combined Cycle for CO2 Recovery
,”
J. Power Sources
,
171
(
2
), pp.
464
470
. 10.1016/j.jpowsour.2007.06.002
24.
Milewski
,
J.
,
Miller
,
A.
, and
Salacinski
,
J.
,
2007
, “
Off-design Analysis of SOFC Hybrid System
,”
Int. J. Hydrogen Energy
,
32
(
6
), pp.
687
698
. 10.1016/j.ijhydene.2006.08.007
25.
Peters
,
R.
,
Engelbracht
,
M.
,
Tiedemann
,
W.
,
Hoven
,
I.
,
Deja
,
R.
,
Nguyen
,
V. N.
,
Blum
,
L.
, and
Stolten
,
D.
,
2017
, “
Development and Test of a Solid Oxide Fuel Cell Subsystem with a Low Temperature Anode Off-Gas Recirculation
,”
ECS Trans.
,
78
(
1
), pp.
2489
2495
. 10.1149/07801.2489ecst
26.
Wagner
,
P. H.
,
Wuillemin
,
Z.
,
Diethelm
,
S.
,
Van herle
,
J.
, and
Schiffmann
,
J.
,
2017
, “
Modeling and Designing of a Radial Anode Off-Gas Recirculation Fan for Solid Oxide Fuel Cell Systems
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
1
), p.
011005
. 10.1115/1.4036401
27.
Powell
,
M.
,
Meinhardt
,
K.
,
Sprenkle
,
V.
,
Chick
,
L.
, and
McVay
,
G.
,
2012
, “
Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode gas Recirculation
,”
J. Power Sources
,
205
(
May
), pp.
377
384
. 10.1016/j.jpowsour.2012.01.098
28.
Araki
,
T.
,
Ohba
,
T.
,
Takezawa
,
S.
,
Onda
,
K.
, and
Sakaki
,
Y.
,
2006
, “
Cycle Analysis of Planar SOFC Power Generation with Serial Connection of low and High Temperature SOFCs
,”
J. Power Sources
,
158
(
1
), pp.
52
59
. 10.1016/j.jpowsour.2005.09.003
29.
Nakamura
,
K.
,
Ide
,
T.
,
Taku
,
S.
,
Nakajima
,
T.
,
Shirai
,
M.
,
Dohkoh
,
T.
,
Kume
,
T.
,
Ikeda
,
Y.
,
Somekawa
,
T.
,
Kushi
,
T.
,
Ogasawara
,
K.
, and
Fujita
,
K.
,
2017
, “
Development of a Highly Efficient SOFC Module Using Two-Stage Stacks and a Fuel Regeneration Process
,”
Fuel Cells
,
17
(
4
), pp.
535
540
. 10.1002/fuce.201600192
30.
Kupecki
,
J.
,
Skrzypkiewicz
,
M.
,
Wierzbicki
,
M.
, and
Stepien
,
M.
,
2017
, “
Experimental and Numerical Analysis of a Serial Connection of two SOFC Stacks in a Micro-CHP System fed by Biogas
,”
Int. J. Hydrogen Energy
,
42
(
5
), pp.
3487
3497
. 10.1016/j.ijhydene.2016.07.222
31.
Kupecki
,
J.
,
Szablowski
,
L.
,
Motylinski
,
K.
,
Zurawska
,
A.
,
Naumovich
,
Y.
,
Szczesniak
,
A.
, and
Milewski
,
J.
, “
Experimental Study of Fuel Recirculation in Solid Oxide Fuel Cell Integrated with Water Removal Unit
,”
Proceedings of European Fuel Cell Technology & Applications Conference—Piero Lunghi Conference
,
Naples, Italy
,
Dec. 12–15, 2017
, pp.
137
138
.
32.
Milewski
,
J.
,
Swirski
,
K.
, and
Santarelli
,
M.
,
2010
,
Advanced Methods of Solid Oxide Fuel Cell Modeling
,
Springer-Verlag
,
New York
.
33.
Bove
,
R.
,
Lunghi
,
P.
, and
Sammes
,
N. M.
,
2005
, “
SOFC Mathematic Model for Systems Simulations. Part one: From a Micro-Detailed to Macro-Black-box Model
,”
Int. J. Hydrogen Energy
,
30
(
2
), pp.
181
187
. 10.1016/j.ijhydene.2004.04.008
34.
Virkar
,
A. V.
,
2005
, “
Theoretical Analysis of the Role of Interfaces in Transport Through Oxygen ion and Electron Conducting Membranes
,”
J. Power Sources
,
147
(
1–2
), pp.
8
31
. 10.1016/j.jpowsour.2005.01.038
You do not currently have access to this content.