Abstract

In this paper, the potential application of an organic Rankine cycle (ORC) for cogeneration in a cement plant is presented. Two ORC system configurations are considered. The first configuration is based on the waste heat recovery from the exit gases of clinker burning system. An additional heat source which is the solar energy was used for the second configuration. Parametric studies are performed for the systems with three different working fluids. Both systems are optimized from the viewpoints of thermodynamic, exergoeconomic, and exergoenvironmental analyses.

References

References
1.
Karellas
,
S.
,
Leontaritis
,
A. D.
,
Bellos
,
E.
, and
Kakaras
,
E.
,
2013
, “
Energetic and Exergetic Analysis of Waste Heat Recovery Systems in the Cement Industry
,”
Energy
,
58
(
9
), pp.
147
156
. 10.1016/j.energy.2013.03.097
2.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021601
. 10.1115/1.4023098
3.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042002
. 10.1115/1.4023513
4.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011602
. 10.1115/1.4024858
5.
Legmann
,
H.
,
2002
, “
Recovery of Industrial Heat in the Cement Industry by Means of the ORC Process
,”
IEEE-IAS/PCS 2002
Cement Industry Technical Conference. Conference Record (Cat. No.02CH37282),
Jacksonville, FL
, pp.
29
35
10.1109/CITCON.2002.1006482.
6.
Wang
,
J.
,
Dai
,
Y.
, and
Gao
,
L.
,
2009
, “
Exergy Analyses and Parametric Optimizations for Different Cogeneration Power Plants in Cement Industry
,”
Appl. Energy
,
86
(
12
), pp.
941
948
. 10.1016/j.apenergy.2008.09.001
7.
Marion
,
M.
,
Voicu
,
I.
, and
Tiffonnet
,
A.
,
2012
, “
Study and Optimization of a Solar Subcritical Organic Rankine Cycle
,”
Renew. Energy
,
48
(
12
), pp.
100
109
. 10.1016/j.renene.2012.04.047
8.
Wang
,
J.-L.
,
Zhao
,
L.
, and
Wang
,
X.-D.
,
2010
, “
A Comparative Study of Pure and Zeotropic Mixtures in Low-Temperature Solar Rankine Cycle
,”
Appl. Energy
,
87
(
11
), pp.
3366
3373
. 10.1016/j.apenergy.2010.05.016
9.
Astolfi
,
M.
,
Xodo
,
L.
,
Romano
,
M. C.
, and
Macchi
,
E.
,
2011
, “
Technical and Economical Analysis of a Solar–Geothermal Hybrid Plant Based on an Organic Rankine Cycle
,”
Geothermics
,
40
(
1
), pp.
58
68
. 10.1016/j.geothermics.2010.09.009
10.
Cheng
,
Z.
,
2014
, “
Hybridisation of Solar and Geothermal Energy in Both Subcritical and Supercritical Organic Rankine Cycles
,”
Energy Convers. Manage.
,
81
(
5
), pp.
72
82
. 10.1016/j.enconman.2014.02.007
11.
Pierobon
,
L.
,
Nguyen
,
T. V.
,
Larsen
,
U.
,
Haglind
,
F.
, and
Elmegaard
,
B.
,
2013
, “
Multi-Objective Optimization of Organic Rankine Cycles for Waste Heat Recovery: Application in an Offshore Platform
,”
Energy
,
58
(
9
), pp.
538
549
. 10.1016/j.energy.2013.05.039
12.
Kalogirou
,
S. A.
,
2012
, “
A Detailed Thermal Model of a Parabolic Trough Collector Receiver
,”
Energy
,
48
(
1
), pp.
298
306
. 10.1016/j.energy.2012.06.023
13.
Wang
,
Z. Q.
,
Zhou
,
N. J.
,
Guo
,
J.
, and
Wang
,
X. Y.
,
2012
, “
Fluid Selection and Parametric Optimization of Organic Rankine Cycle Using Low Temperature Waste Heat
,”
Energy
,
40
(
1
), pp.
107
115
. 10.1016/j.energy.2012.02.022
14.
Kakac
,
S.
, and
Liu
,
H.
,
2000
,
Heat Exchangers Selection Rating, and Thermal Design
,
CRC Press
,
New York
.
15.
Kalogirou
,
S.
,
2009
,
Solar Energy Engineering: Processes and Systems
,
Elsevier
,
New York
.
16.
Duffie
,
J.
, and
Beckman
,
W.
,
2006
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons, Inc.
,
New York
.
17.
Al-Sulaiman
,
F. A.
,
2012
, “
Exergy Analysis of Parabolic Trough Solar Collectors Integrated With Combined Steam and Organic Rankine Cycles
,”
Energy Convers. Manage.
,
77
(
1
), pp.
441
449
. 10.1016/j.enconman.2013.10.013
18.
Therminol VP-1, Vapor Phase Liquid Phase Heat Transfer Fluid
,” Therminol Heat Transfer Fluids by Solutia Inc. https://schultzchem.com/
19.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley and Sons
,
New York
.
20.
Meyer
,
L.
,
Tsatsaronis
,
G.
,
Buchgeister
,
J.
, and
Schebek
,
L.
,
2009
, “
Exergoenvironmental Analysis for Evaluation of the Environmental Impact of Energy Conversion Systems
,”
Energy
,
34
(
9
), pp.
75
89
. 10.1016/j.energy.2008.07.018
21.
Abido
,
M. A.
,
2003
, “
Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms
,”
IEEE Trans. Power Syst.
,
18
(
11
), pp.
1529
1537
. 10.1109/TPWRS.2003.818693
22.
Banat
,
F.
, and
Jwaied
,
N.
,
2008
, “
Exergy Analysis of Desalination by Solar-Powered Membrane Distillation Units
,”
Desalination
,
230
(
10
), pp.
27
40
. 10.1016/j.desal.2007.11.013
23.
Baatz
,
E.
, and
Heidt
,
G.
,
2000
, “
First Waste Heat Power Generating Plant Using the Organic Rankine Cycle Process for Utilizing Residual Clinker Cooler Exhaust Air
,”
ZKG Int.
,
53
, pp.
425
436
.
24.
Touil
,
D.
,
Boughedaoui
,
M.
,
Chikhi
,
S.
, and
Frances
,
C.
,
2007
, “
Modélisation D’un Préchauffeur à Cyclones D’une Cimenterie et Analyse des Pertes Physico-Chimiques D’exergie
,”
Récents Progrès en Génie des Procédés.
, Numéro 96, Ed. SFGP,
Paris, France
.
You do not currently have access to this content.