Abstract

The paper deals with mathematical modeling of heat transfer phenomena occurring in a system containing thermoelectric elements. The main focus was on creating a useful computational tool for designing, validating, testing, controlling, and regulating the energy harvesting system with a thermoelectric cell. The model widely described in the literature, assuming a constant temperature level on both sides of the cell, has been modified to take into account the thermal resistance of heat exchangers that are inseparable parts of nearly every device of this kind. The results and conclusions from the solutions of equations forming a formalized record of the proposed method, the assumed approach to modeling, used physical phenomena and sensitivity analysis of the impact of the tested parameters on the system operation was presented. The calculations were made for the data of a selected thermoelectric generating cell available on the market.

References

1.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D’Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Res. Technol.
,
135
(
2
), p.
022001
. 10.1115/1.4023097
2.
Rychter
,
T.
, and
Teodorczyk
,
A.
,
2006
,
Theory of Piston Engines
,
WKL
,
Warsaw
(in Polish).
3.
Buchalik
,
R.
,
Buczkowski
,
D.
,
Przybyla
,
G.
, and
Nowak
,
G.
,
2016
, “
Investigation of Waste Heat Recovery for Automobile Application Based on a Thermoelectric Module
,”
J. KONES Powertrain Transp.
,
23
(
4
), pp.
25
32
. 10.5604/12314005.1217185
4.
Nolas
,
G. S.
,
Sharp
,
J.
, and
Goldsmid
,
H. J.
,
2001
,
Thermoelectrics, Basic Principles and New Materials Developments
,
Springer-Verlag
,
New York
.
5.
Zhu
,
G.
,
Liu
,
J.
,
Fu
,
J.
, and
Wang
,
S.
,
2017
, “
A Combined Organic Rankine Cycle With Double Modes Used for Internal Combustion Engine Waste Heat Recovery
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112804
. 10.1115/1.4036955
6.
Champier
,
D.
,
2017
, “
Thermoelectric Generators: A Review of Applications
,”
Energy Convers. Manage.
,
140
(
Part 2
), pp.
167
181
. 10.1016/j.enconman.2017.02.070
7.
Amini
,
A.
,
Ekici
,
O.
, and
Yakut
,
K.
,
2019
, “
Investigating the Effect of Medium Liquid Layer Circulation on Temperature Distribution in a Thermoelectric Generator Heat Exchanger Assembly
,”
ASME J. Energy Res. Technol.
,
141
(
4
), p.
041902
. 10.1115/1.4042280
8.
Mansouri
,
N.
,
Timm
,
E. J.
,
Schock
,
H. J.
,
Sahoo
,
D.
, and
Kotrba
,
A.
,
2016
, “
Development of a Circular Thermoelectric Skutterudite Couple Using Compression Technology
,”
ASME J. Energy Res. Technol.
,
138
(
5
), p.
052003
. 10.1115/1.4032619
9.
Pierce
,
R. D.
, and
Stevens
,
R. J.
,
2017
, “
Measuring Thermal Substrate Resistance and Impact on the Characterization of Thermoelectric Modules
,”
Measurement
,
111
(
Dec.
), pp.
173
182
. 10.1016/j.measurement.2017.07.015
10.
He
,
W.
,
Wang
,
S.
,
Li
,
Y.
, and
Zhao
,
Y.
,
2016
, “
Structural Size Optimization on an Exhaust Exchanger Based on the Fluid Heat Transfer and Flow Resistance Characteristics Applied to an Automotive Thermoelectric Generator
,”
Energy Convers. Manage.
,
129
(
Dec.
), pp.
240
249
. 10.1016/j.enconman.2016.10.032
11.
Siddique
,
A. R. M.
,
Kratz
,
F.
,
Mahmud
,
S. J.
, and
Heyst
,
B. V.
,
2019
, “
Energy Conversion by Nanomaterial-Based Trapezoidal-Shaped Leg of Thermoelectric Generator Considering Convection Heat Transfer Effect
,”
ASME J. Energy Res. Technol.
,
141
(
8
), p.
082001
. 10.1115/1.4042644
12.
Gao
,
J.
,
Du
,
Q.
,
Chen
,
M.
,
Li
,
B.
, and
Zhang
,
D.
,
2015
, “
Assessing the Accuracy of Mathematical Models Used in Thermoelectric Simulation: Thermal Influence of Insulated Air Zone and Radiation Heat
,”
Appl. Therm. Eng.
,
82
(
May
), pp.
162
169
. 10.1016/j.applthermaleng.2015.02.072
13.
Wang
,
Y.
,
Shuai
,
L.
,
Zhang
,
Y.
,
Deng
,
Y.
, and
Su
,
C.
,
2016
, “
The Influence of Inner Topology of Exhaust Heat Exchanger and Thermoelectric Module Distribution on the Performance of Automotive Thermoelectric Generator
,”
Energy Convers. Manage.
,
126
(
Oct.
), pp.
266
277
. 10.1016/j.enconman.2016.08.009
14.
Ying
,
X.
,
Ye
,
F.
,
Liu
,
R.
, and
Bao
,
H.
,
2018
, “
Design and Optimization of Thermoelectric Cooling System Under Natural Convection Condition
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051008
. 10.1115/1.4039926
15.
Liu
,
T.
, and
Yang
,
Z.
,
2018
, “
Performance Assessment and Optimization of a Thermophotovoltaic Converter—Thermoelectric Generator Combined System
,”
ASME J. Energy Res. Technol.
,
140
(
7
), p.
072010
. 10.1115/1.4039629
16.
Chen
,
M.
,
Lu
,
S.
, and
Liao
,
B.
,
2005
, “
On the Figure of Merit of Thermoelectric Generators
,”
ASME J. Energy Res. Technol.
,
127
(
1
), pp.
37
41
. 10.1115/1.1811120
17.
Chen
,
L.
,
Gong
,
J.
,
Sun
,
F.
, and
Wu
,
C.
,
2002
, “
Effect of Heat Transfer on the Performance of Thermoelectric Generators
,”
Int. J. Therm. Sci.
,
41
(
1
), pp.
95
99
. 10.1016/S1290-0729(01)01307-2
18.
Mohamed
,
E. S.
,
2019
, “
Development and Performance Analysis of a TEG System Using Exhaust Recovery for a Light Diesel Vehicle With Assessment of Fuel Economy and Emissions
,”
Appl. Therm. Eng.
,
147
(
Jan.
), pp.
661
674
. 10.1016/j.applthermaleng.2018.10.100
19.
Mahmoudinezhad
,
S.
,
Rezaniakolaei
,
A.
, and
Rosendahl
,
L. A.
,
2017
, “
Experimental Study on Effect of Operating Conditions on Thermoelectric Power Generation
,”
9th International Conference on Applied Energy, ICAE2017
,
Cardiff
,
Aug. 21–24
, pp.
558
563
.
20.
Hendricks
,
T. J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Res. Technol.
,
129
(
3
), pp.
223
231
. 10.1115/1.2751504
21.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Res. Technol.
,
131
(
1
), p.
012401
. 10.1115/1.3066392
22.
Ran
,
Y.
,
Deng
,
Y.
,
Hu
,
T.
,
Su
,
C.
, and
Liu
,
X.
,
2018
, “
Energy Efficient Thermoelectric Generator-Powered Localized Air-Conditioning System Applied in a Heavy-Duty Vehicle
,”
ASME J. Energy Res. Technol.
,
140
(
7
), p.
072007
. 10.1115/1.4039607
23.
Tang
,
Z. B.
,
Deng
,
Y. D.
,
Su
,
C. Q.
,
Shuai
,
W. W.
, and
Xie
,
C. J.
,
2015
, “
A Research on Thermoelectric Generator’s Electrical Performance Under Temperature Mismatch Conditions for Automotive Waste Heat Recovery System
,”
Case Stud. Therm. Eng.
,
5
(
Mar.
), pp.
143
150
. 10.1016/j.csite.2015.03.006
24.
Montecucco
,
A.
,
Siviter
,
J.
, and
Knox
,
A. R.
,
2015
, “
Constant Heat Characterisation and Geometrical Optimisation of Thermoelectric Generators
,”
Appl. Energy
,
149
(
July
), pp.
248
258
. 10.1016/j.apenergy.2015.03.120
25.
Lienhard IV
,
J. H.
, and
Lienhard V
,
J. H.
,
2017
,
A Heat Transfer Textbook
,
Phlogiston Press
,
Cambridge, MA
.
26.
Ji
,
D.
,
Wei
,
Z.
,
Mazzoni
,
S.
,
Mengarelli
,
M.
,
Rajoo
,
S.
,
Zhao
,
J.
,
Pou
,
J.
, and
Romagnoli
,
A.
,
2018
, “
Thermoelectric Generation for Waste Heat Recovery: Application of a System Level Design Optimization Approach Via Taguchi Method
,”
Energy Convers. Manage.
,
172
(
Sept.
), pp.
507
516
. 10.1016/j.enconman.2018.06.016
You do not currently have access to this content.