Abstract

Hydrotreating process is an alternate approach for producing diesel hydrocarbons from the biomass-based oils. In the present study, used cooking oil was selected for the hydrotreating process due to its high abundance. A batch reactor was used for carrying out the experiments. To increase the reaction rate a manganese, cerium promoted ruthenium-based catalyst supported on Al2O3 was used. The design of experiments was used for optimizing the process parameters. The Taguchi method was selected as it reduces the number of experiments which saves time and money. The study was aimed at increasing the conversion percentage and diesel selectivity and reducing the naphtha selectivity. Since multi-objective optimization was required, fuzzy logic was incorporated which utilizes the human thought logic. The analysis of variance shows that the reaction temperature and reaction pressure significantly affect the output parameters. Higher temperature leads to cracking of the oil resulting in the formation of large amount of lower carbon chains. Moreover, high hydrogen pressure results in increase in the hydrogenation process, thereby increasing the diesel selectivity. The optimized parameters obtained from the study were 360 °C reaction temperature, 40-bar initial reaction pressure, and 200-min reaction time. Confirmation experiment was carried out using these parameters, and the conversion efficiency and diesel selectivity was 89.7% and 88.2%, respectively. The study shows that the combination of Taguchi and fuzzy logic is an effective method for optimizing the process parameters of the hydrotreating process.

References

1.
Huang
,
Y.
,
Wei
,
L.
,
Julson
,
J.
,
Gao
,
Y.
, and
Zhao
,
X.
,
2015
, “
Converting Pine Sawdust to Advanced Biofuel Over HZSM-5 Using a Two-Stage Catalytic Pyrolysis Reactor
,”
J. Anal. Appl. Pyrolysis
,
111
, pp.
148
155
. 10.1016/j.jaap.2014.11.019
2.
Huang
,
Y.
,
Wei
,
L.
,
Crandall
,
Z.
,
Julson
,
J.
, and
Gu
,
Z.
,
2015
, “
Combining Mo–Cu/HZSM-5 With a Two-Stage Catalytic Pyrolysis System for Pine Sawdust Thermal Conversion
,”
Fuel
,
150
, pp.
656
663
. 10.1016/j.fuel.2015.02.071
3.
Geo
,
V. E.
,
Sonthalia
,
A.
,
Nagarajan
,
G.
,
Nagalingam
,
B.
, and
Aloui
,
F.
,
2019
, “
Effect of Port Premixed Liquefied Petroleum Gas on the Engine Characteristics
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), pp.
1
8
. 10.1115/1.4043698
4.
Demirbas
,
A.
,
2011
, “
Competitive Liquid Biofuels From Biomass
,”
Appl. Energy
,
88
(
1
), pp.
17
28
. 10.1016/j.apenergy.2010.07.016
5.
Naik
,
S. N.
,
Goud
,
V. V.
,
Rout
,
P. K.
, and
Dalai
,
A. K.
,
2010
, “
Production of First and Second Generation Biofuels: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
14
(
2
), pp.
578
597
. 10.1016/j.rser.2009.10.003
6.
Thushari
,
P. G. I.
, and
Babel
,
S.
,
2017
, “
Biodiesel Production From Waste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032204
. 10.1115/1.4038380
7.
Li
,
X.
,
Luo
,
X.
,
Jin
,
Y.
,
Li
,
J.
,
Zhang
,
H.
,
Zhang
,
A.
, and
Xie
,
J.
,
2018
, “
Heterogeneous Sulfur-Free Hydrodeoxygenation Catalysts for Selectively Upgrading the Renewable Bio-Oils to Second Generation Biofuels
,”
Renew. Sustain. Energy Rev.
,
82
(
3
), pp.
3762
3797
. 10.1016/j.rser.2017.10.091
8.
Sankaranarayanan
,
T. M.
,
Banu
,
M.
,
Pandurangan
,
A.
, and
Sivasanker
,
S.
,
2011
, “
Hydroprocessing of Sunflower Oil-Gas oil Blends Over Sulfided Ni-Mo-Al-Zeolite Beta Composites
,”
Bioresour. Technol.
,
102
(
22
), pp.
10717
10723
. 10.1016/j.biortech.2011.08.127
9.
Saidi
,
M.
,
Samimi
,
F.
,
Karimipourfard
,
D.
,
Nimmanwudipong
,
T.
,
Gates
,
B. C.
, and
Rahimpour
,
M. R.
,
2014
, “
Upgrading of Lignin-Derived Bio-oils by Catalytic Hydrodeoxygenation
,”
Energy Environ. Sci.
,
7
(
1
), pp.
103
129
. 10.1039/C3EE43081B
10.
Mortensen
,
P. M.
,
Grunwaldt
,
J.-D.
,
Jensen
,
P. A.
,
Knudsen
,
K. G.
, and
Jensen
,
A. D.
,
2011
, “
A Review of Catalytic Upgrading of Bio-oil to Engine Fuels
,”
Appl. Catal., A
,
407
(
1–2
), pp.
1
19
. 10.1016/j.apcata.2011.08.046
11.
Sonthalia
,
A.
, and
Kumar
,
N.
,
2019
, “
Hydroprocessed Vegetable Oil as a Fuel for Transportation Sector: A Review
,”
J. Energy Inst.
,
92
(
1
), pp.
1
17
. 10.1016/j.joei.2017.10.008
12.
Bhuiya
,
M. M. K.
,
Rasul
,
M. G.
,
Khan
,
M. M. K.
,
Ashwath
,
N.
,
Azad
,
A. K.
, and
Hazrat
,
M. A.
,
2016
, “
Prospects of 2nd Generation Biodiesel as a Sustainable Fuel—Part 2: Properties, Performance and Emission Characteristics
,”
Renew. Sustain. Energy Rev.
,
55
, pp.
1129
1146
. 10.1016/j.rser.2015.09.086
13.
Kubička
,
D.
,
Bejblová
,
M.
, and
Vlk
,
J.
,
2010
, “
Conversion of Vegetable Oils into Hydrocarbons Over CoMo/MCM-41 Catalysts
,”
Top. Catal.
,
53
(
3
), pp.
168
178
. 10.1007/s11244-009-9421-z
14.
Kubička
,
D.
,
Šimáček
,
P.
, and
Žilková
,
N.
,
2009
, “
Transformation of Vegetable Oils into Hydrocarbons Over Mesoporous-Alumina-Supported CoMo Catalysts
,”
Top. Catal.
,
52
(
1
), pp.
161
168
. 10.1007/s11244-008-9145-5
15.
Tiwari
,
R.
,
Rana
,
B. S.
,
Kumar
,
R.
,
Verma
,
D.
,
Kumar
,
R.
,
Joshi
,
R. K.
,
Garg
,
M. O.
, and
Sinha
,
A. K.
,
2011
, “
Hydrotreating and Hydrocracking Catalysts for Processing of Waste Soya-Oil and Refinery-Oil Mixtures
,”
Catal. Commun.
,
12
(
6
), pp.
559
562
. 10.1016/j.catcom.2010.12.008
16.
Šimáček
,
P.
,
Kubička
,
D.
,
Šebor
,
G.
, and
Pospíšil
,
M.
,
2009
, “
Hydroprocessed Rapeseed oil as a Source of Hydrocarbon-Based Biodiesel
,”
Fuel
,
88
(
3
), pp.
456
460
. 10.1016/j.fuel.2008.10.022
17.
Kubička
,
D.
, and
Horáček
,
J.
,
2011
, “
Deactivation of HDS Catalysts in Deoxygenation of Vegetable Oils
,”
Appl. Catal., A
,
394
(
1–2
), pp.
9
17
. 10.1016/j.apcata.2010.10.034
18.
Donnis
,
B.
,
Egeberg
,
R. G.
,
Blom
,
P.
, and
Knudsen
,
K. G.
,
2009
, “
Hydroprocessing of Bio-oils and Oxygenates to Hydrocarbons. Understanding the Reaction Routes
,”
Top. Catal.
,
52
(
3
), pp.
229
240
. 10.1007/s11244-008-9159-z
19.
Sotelo-boy
,
R.
,
Liu
,
Y.
,
Minowa
,
T.
,
Sotelo-Boyás
,
R.
,
Liu
,
Y.
, and
Minowa
,
T.
,
2011
, “
Renewable Diesel Production From the Hydrotreating of Rapeseed Oil With Pt/Zeolite and NiMo/Al2O3 Catalysts
,”
Ind. Eng. Chem. Res.
,
50
(
5
), pp.
2791
2799
. 10.1021/ie100824d
20.
Murata
,
K.
,
Liu
,
Y.
,
Inaba
,
M.
, and
Takahara
,
I.
,
2010
, “
Production of Synthetic Diesel by Hydrotreatment of Jatropha Oils Using Pt−Re/H-ZSM-5 Catalyst
,”
Energy Fuels
,
24
(
4
), pp.
2404
2409
. 10.1021/ef901607t
21.
Knothe
,
G.
,
2010
, “
Biodiesel and Renewable Diesel: A Comparison
,”
Prog. Energy Combust. Sci.
,
36
(
3
), pp.
364
373
. 10.1016/j.pecs.2009.11.004
22.
Liu
,
Y.
,
Sotelo-Boyás
,
R.
,
Murata
,
K.
,
Minowa
,
T.
, and
Sakanishi
,
K.
,
2009
, “
Hydrotreatment of Jatropha Oil to Produce Green Diesel Over Trifunctional Ni–Mo/SiO2 –Al2O3 Catalyst
,”
Chem. Lett.
,
38
(
6
), pp.
552
553
. 10.1246/cl.2009.552
23.
Liu
,
Y.
,
Sotelo-Boyás
,
R.
,
Murata
,
K.
,
Minowa
,
T.
, and
Sakanishi
,
K.
,
2012
, “
Production of Bio-hydrogenated Diesel by Hydrotreatment of High-Acid-Value Waste Cooking Oil Over Ruthenium Catalyst Supported on Al-Polyoxocation-Pillared Montmorillonite
,”
Catalysts
,
2
(
4
), pp.
171
190
. 10.3390/catal2010171
24.
Liu
,
Y.
,
Sotelo-Boyás
,
R.
,
Murata
,
K.
,
Minowa
,
T.
, and
Sakanishi
,
K.
,
2011
, “
Hydrotreatment of Vegetable Oils to Produce Bio-Hydrogenated Diesel and Liquefied Petroleum Gas Fuel Over Catalysts Containing Sulfided Ni–Mo and Solid Acids
,”
Energy Fuels
,
25
(
10
), pp.
4675
4685
. 10.1021/ef200889e
25.
Zhao
,
C.
,
Brück
,
T.
, and
Lercher
,
J. A.
,
2013
, “
Catalytic Deoxygenation of Microalgae Oil to Green Hydrocarbons
,”
Green Chem.
,
15
(
7
), pp.
1720
1739
. 10.1039/c3gc40558c
26.
Snåre
,
M.
,
Kubičková
,
I.
,
Mäki-Arvela
,
P.
,
Eränen
,
K.
, and
Murzin
,
D. Y.
,
2006
, “
Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel
,”
Ind. Eng. Chem. Res.
,
45
(
16
), pp.
5708
5715
. 10.1021/ie060334i
27.
Osaka
,
Y.
,
Ikeda
,
Y.
,
Hashizume
,
D.
, and
Iwamoto
,
M.
,
2013
, “
Direct Hydrodeoxygenation of Cellulose and Xylan to Lower Alkanes on Ruthenium Catalysts in Subcritical Water
,”
Biomass Bioenergy
,
56
, pp.
1
7
. 10.1016/j.biombioe.2013.04.012
28.
He
,
L.
,
Wu
,
C.
,
Cheng
,
H.
,
Yu
,
Y.
,
Zhao
,
F.
,
Preparation
,
C.
, and
Test
,
A.
,
2012
, “
Supplementary Information Highly Selective and Efficient Catalytic Conversion of Ethyl Stearate Into Liquid Hydrocarbons Over Ru/TiO2 Catalyst Under Mild Conditions
,”
Catal. Sci. Technol.
,
2
(
7
), pp.
2
4
. 10.1039/c2cy20157g
29.
Kikhtyanin
,
O. V.
,
Rubanov
,
A. E.
,
Ayupov
,
A. B.
, and
Echevsky
,
G. V.
,
2010
, “
Hydroconversion of Sunflower Oil on Pd/SAPO-31 Catalyst
,”
Fuel
,
89
(
10
), pp.
3085
3092
. 10.1016/j.fuel.2010.05.033
30.
Guo
,
J. H.
,
Xu
,
G. Y.
,
Shen
,
F.
,
Fu
,
Y.
,
Zhang
,
Y.
, and
Guo
,
Q. X.
,
2015
, “
Catalytic Conversion of Jatropha Oil to Alkanes Under Mild Conditions With a Ru/La(OH)3 Catalyst
,”
Green Chem.
,
17
(
5
), pp.
2888
2895
. 10.1039/C4GC02406K
31.
Patil
,
S. J.
, and
Vaidya
,
P. D.
,
2017
, “
Catalytic Hydrotreatment of Jatropha Oil Over Lanthanum Hydroxide Supported Noble Metals: Effect of Promotion With Cerium
,”
ChemistrySelect
,
2
(
35
), pp.
11918
11925
. 10.1002/slct.201702258
32.
Patil
,
S. J.
, and
Vaidya
,
P. D.
,
2018
, “
On the Production of Bio-hydrogenated Diesel Over Hydrotalcite-Like Supported Palladium and Ruthenium Catalysts
,”
Fuel Process. Technol.
,
169
, pp.
142
149
. 10.1016/j.fuproc.2017.09.026
33.
Hribernik
,
A.
, and
Kegl
,
B.
,
2009
, “
Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel
,”
Energy Fuels
,
23
(
3
), pp.
1754
1758
. 10.1021/ef800986w
34.
Cao
,
F.
,
Chen
,
Y.
,
Zhai
,
F.
,
Li
,
J.
,
Wang
,
J.
,
Wang
,
X.
,
Wang
,
S.
, and
Zhu
,
W.
,
2008
, “
Biodiesel Production From High Acid Value Waste Frying Oil Catalyzed by Superacid Heteropolyacid
,”
Biotechnol. Bioeng.
,
101
(
1
), pp.
93
100
. 10.1002/bit.21879
35.
Guzman
,
A.
,
Torres
,
J. E.
,
Prada
,
L. P.
, and
Nuñez
,
M. L.
,
2010
, “
Hydroprocessing of Crude Palm Oil at Pilot Plant Scale
,”
Catal. Today.
,
156
(
1–2
), pp.
38
43
. 10.1016/j.cattod.2009.11.015
36.
Bezergianni
,
S.
,
Dimitriadis
,
A.
,
Kalogianni
,
A.
, and
Knudsen
,
K. G.
,
2011
, “
Toward Hydrotreating of Waste Cooking Oil for Biodiesel Production, Effect of Pressure, H2/Oil Ratio, and Liquid Hourly Space Velocity
,”
Ind. Eng. Chem. Res.
,
50
(
7
), pp.
3874
3879
. 10.1021/ie200251a
37.
Bezergianni
,
S.
,
Dimitriadis
,
A.
,
Kalogianni
,
A.
, and
Pilavachi
,
P. A.
,
2010
, “
Hydrotreating of Waste Cooking Oil for Biodiesel Production. Part I: Effect of Temperature on Product Yields and Heteroatom Removal
,”
Bioresour. Technol.
,
101
(
17
), pp.
6651
6656
. 10.1016/j.biortech.2010.03.081
38.
Bezergianni
,
S.
,
Kalogianni
,
A.
, and
Dimitriadis
,
A.
,
2012
, “
Catalyst Evaluation for Waste Cooking Oil Hydroprocessing
,”
Fuel
,
93
, pp.
638
641
. 10.1016/j.fuel.2011.08.053
39.
Mansur
,
D.
,
Ruliana
, and
Rustana
,
C. E.
,
2018
, “
Hydroprocessed Calophyllum Inophyllum Oil for Linear Bio-Alkane Fuel Production
,”
Proceedings of the Conference on the Industrial and Commercial Use of Energy, ICUE
,
Oct. 24–26
,
Asian Institute of Technology
, pp.
1
6
.
40.
Mishra
,
D. K.
,
Dabbawala
,
A. A.
, and
Hwang
,
J. S.
,
2013
, “
Ruthenium Nanoparticles Supported on Zeolite y as an Efficient Catalyst for Selective Hydrogenation of Xylose to Xylitol
,”
J. Mol. Catal. A: Chem.
,
376
, pp.
63
70
. 10.1016/j.molcata.2013.04.011
41.
Mishra
,
D. K.
,
Dabbawala
,
A. A.
,
Park
,
J. J.
,
Jhung
,
S. H.
, and
Hwang
,
J. S.
,
2014
, “
Selective Hydrogenation of d-Glucose to d-Sorbitol Over HY Zeolite Supported Ruthenium Nanoparticles Catalysts
,”
Catal. Today
,
232
, pp.
99
107
. 10.1016/j.cattod.2013.10.018
42.
Sonthalia
,
A.
, and
Kumar
,
N.
,
2019
, “
Comparison of Fuel Characteristics of Hydrotreated Waste Cooking Oil With Its Biodiesel and Fossil Diesel
,”
Environ. Sci. Pollut. Res.
10.1007/s11356-019-07110-w
43.
Ruinart de Brimont
,
M.
,
Dupont
,
C.
,
Daudin
,
A.
,
Geantet
,
C.
, and
Raybaud
,
P.
,
2012
, “
Deoxygenation Mechanisms on Ni-Promoted MoS2 Bulk Catalysts: A Combined Experimental and Theoretical Study
,”
J. Catal.
,
286
, pp.
153
164
. 10.1016/j.jcat.2011.10.022
44.
Liu
,
Q.
,
Zuo
,
H.
,
Wang
,
T.
,
Ma
,
L.
, and
Zhang
,
Q.
,
2013
, “
One-Step Hydrodeoxygenation of Palm Oil to Isomerized Hydrocarbon Fuels Over Ni Supported on Nano-Sized SAPO-11 Catalysts
,”
Appl. Catal., A
,
468
, pp.
68
74
. 10.1016/j.apcata.2013.08.009
45.
Chen
,
L.
,
Li
,
H.
,
Fu
,
J.
,
Miao
,
C.
,
Lv
,
P.
, and
Yuan
,
Z.
,
2016
, “
Catalytic Hydroprocessing of Fatty Acid Methyl Esters to Renewable Alkane Fuels Over Ni/HZSM-5 Catalyst
,”
Catal. Today
,
259
(
2
), pp.
266
276
. 10.1016/j.cattod.2015.08.023
46.
Nakagawa
,
Y.
,
Liu
,
S.
,
Tamura
,
M.
, and
Tomishige
,
K.
,
2015
, “
Catalytic Total Hydrodeoxygenation of Biomass-Derived Polyfunctionalized Substrates to Alkanes
,”
ChemSusChem
,
8
(
7
), pp.
1114
1132
. 10.1002/cssc.201403330
47.
Nimkarde
,
M. R.
, and
Vaidya
,
P. D.
,
2016
, “
Toward Diesel Production From Karanja Oil Hydrotreating Over CoMo and NiMo Catalysts
,”
Energy Fuels
,
30
(
4
), pp.
3107
3112
. 10.1021/acs.energyfuels.6b00138
48.
Yang
,
Y.
,
Wang
,
Q.
,
Zhang
,
X.
,
Wang
,
L.
, and
Li
,
G.
,
2013
, “
Hydrotreating of C18 Fatty Acids to Hydrocarbons on Sulphided NiW/SiO2–Al2O3
,”
Fuel Process. Technol.
,
116
, pp.
165
174
. 10.1016/j.fuproc.2013.05.008
49.
Lu
,
S.-M.
,
Li
,
Y.-C. M.
, and
Tang
,
J.-C.
,
2003
, “
Optimum Design of Natural-Circulation Solar-Water-Heater by the Taguchi Method
,”
Energy
,
28
(
7
), pp.
741
750
. 10.1016/S0360-5442(02)00189-5
50.
Wu
,
H.-W.
, and
Wu
,
Z.-Y.
,
2012
, “
Combustion Characteristics and Optimal Factors Determination With Taguchi Method for Diesel Engines Port-Injecting Hydrogen
,”
Energy
,
47
(
1
), pp.
411
420
. 10.1016/j.energy.2012.09.027
51.
Datta
,
S.
,
Bandyopadhyay
,
A.
, and
Pal
,
P. K.
,
2006
, “
Desirability Function Approach for Solving Multi-Objective Optimization Problem in Submerged Arc Welding
,”
J. Manuf. Sci. Prod.
,
7
(
2
), p.
127
. 10.1515/ijmsp.2006.7.2.127
52.
Kumar
,
P.
,
Barua
,
P. B.
, and
Gaindhar
,
J. L.
,
2000
, “
Quality Optimization (Multi-Characteristics) Through Taguchi’s Technique and Utility Concept
,”
Qual. Reliab. Eng. Int.
,
16
(
6
), pp.
475
485
. 10.1002/1099-1638(200011/12)16:6<475::AID-QRE342>3.0.CO;2-0
53.
Datta
,
S.
,
Bandyopadhyay
,
A.
, and
Pal
,
P. K.
,
2008
, “
Grey-Based Taguchi Method for Optimization of Bead Geometry in Submerged Arc Bead-on-Plate Welding
,”
Int. J. Adv. Manuf. Technol.
,
39
(
11
), pp.
1136
1143
. 10.1007/s00170-007-1283-6
54.
Yao
,
A. W. L.
,
Chi
,
S. C.
, and
Chen
,
C. K.
,
2005
, “
Development of an Integrated Grey–Fuzzy-Based Electricity Management System for Enterprises
,”
Energy
,
30
(
15
), pp.
2759
2771
. 10.1016/j.energy.2005.02.001
55.
Lin
,
J.
,
Wang
,
K.
,
Yan
,
B.
, and
Tarng
,
Y.
,
2000
, “
Optimization of the Electrical Discharge Machining Process Based on the Taguchi Method With Fuzzy Logics
,”
J. Mater. Process. Technol.
,
102
(
1
), pp.
48
55
. 10.1016/S0924-0136(00)00438-6
You do not currently have access to this content.