Abstract

The minimum miscibility pressure (MMP) is one of the critical parameters needed in the successful design of a miscible gas injection for enhanced oil recovery purposes. In this study, we explore the capability of using the Gaussian process machine learning (GPML) approach, for accurate prediction of this vital property in both pure and impure CO2-injection streams. We first performed a sensitivity analysis of different kernels and then a comparative analysis with other techniques. The new GPML model, when compared with previously published predictive models, including both correlations and other machine learning (ML)/intelligent models, showed superior performance with the highest correlation coefficient and the lowest error metrics.

References

1.
Ampomah
,
W.
,
Balch
,
R.
,
Cather
,
M.
,
Rose-Coss
,
D.
,
Dai
,
Z.
,
Heath
,
J.
,
Dewers
,
T.
, and
Mozley
,
P.
,
2016
, “
Evaluation of CO2 Storage Mechanisms in CO2 Enhanced Oil Recovery Sites: Application to Morrow Sandstone Reservoir
,”
Energy Fuels
,
30
(
10
), pp.
8545
8555
. 10.1021/acs.energyfuels.6b01888
2.
Jessen
,
K.
,
Kovscek
,
A. R.
, and
Orr
,
F. M.
,
2005
, “
Increasing CO2 Storage in Oil Recovery
,”
Energy Convers. Manage.
,
46
(
2
), pp.
293
311
. 10.1016/j.enconman.2004.02.019
3.
Dai
,
Z.
,
Middleton
,
R.
,
Viswanathan
,
H.
,
Fessenden-Rahn
,
J.
,
Bauman
,
J.
,
Pawar
,
R.
,
Lee
,
S.-Y.
, and
McPherson
,
B.
,
2014
, “
An Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery
,”
Environ. Sci. Technol. Lett.
,
1
(
1
), pp.
49
54
. 10.1021/ez4001033
4.
Feng
,
Q.
,
Cui
,
R.
,
Wang
,
S.
,
Zhang
,
J.
, and
Jiang
,
Z.
,
2019
, “
Estimation of CO2 Diffusivity in Brine by Use of the Genetic Algorithm and Mixed Kernels-Based Support Vector Machine Model
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
041001
. 10.1115/1.4041724
5.
Jaubert
,
J.-N.
,
Avaullee
,
L.
, and
Pierre
,
C.
,
2002
, “
Is it Still Necessary to Measure the Minimum Miscibility Pressure?
,”
Ind. Eng. Chem. Res.
,
41
(
2
), pp.
303
310
. 10.1021/ie010485f
6.
Johns
,
R. T.
,
Dindoruk
,
B.
, and
Orr
,
F. M.
,
1993
, “
Analytical Theory of Combined Condensing/Vaporizing Gas Drives
,”
SPE Adv. Technol. Ser.
,
1
(
2
), pp.
7
16
. 10.2118/24112-PA
7.
Orr
,
F. M.
,
2007
,
Theory of Gas Injection Processes
,
Tie-Line Publications
,
Copenhagen
.
8.
Orr
,
F. M.
, and
Jensen
,
C. M.
,
1984
, “
Interpretation of Pressure-Composition Phase Diagrams for CO2/Crude-Oil Systems
,”
Soc. Pet. Eng. J.
,
24
(
5
), pp.
485
497
. 10.2118/11125-PA
9.
Zick
,
A. A.
,
1986
, “
A Combined Condensing/Vaporizing Mechanism in the Displacement of Oil by Enriched Gases
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 5–8
,
Society of Petroleum Engineers
.
10.
Dong
,
M.
,
Huang
,
S.
,
Dyer
,
S. B.
, and
Mourits
,
F. M.
,
2001
, “
A Comparison of CO2 Minimum Miscibility Pressure Determinations for Weyburn Crude Oil
,”
J. Pet. Sci. Eng.
,
31
(
1
), pp.
13
22
. 10.1016/S0920-4105(01)00135-8
11.
Jarrell
,
P. M.
,
Fox
,
C. E.
,
Stein
,
M. H.
, and
Webb
,
S.
,
2002
,
Practical Aspects of CO2 Flooding
, Vol.
22
,
Society of Petroleum Engineers
,
Richardson, TX
.
12.
Li
,
A.
,
Ren
,
X.
,
Fu
,
S.
,
Lv
,
J.
,
Li
,
X.
,
Liu
,
Y.
, and
Lu
,
Y.
,
2018
, “
The Experimental Study on the Flooding Regularities of Various CO2 Flooding Modes Implemented on Ultralow Permeability Cores
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072902
. http://dx.doi/org/10.1115/1.4039319
13.
Rao
,
D. N.
,
Girard
,
M.
, and
Sayegh
,
S. G.
,
1989
, “
Interfacial Phenomena in Miscible Gas Processes
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–11
.
14.
Rao
,
D. N.
,
1997
, “
A New Technique of Vanishing Interfacial Tension for Miscibility Determination
,”
Fluid Phase Equilib.
,
139
(
1–2
), pp.
311
324
. 10.1016/S0378-3812(97)00180-5
15.
Christiansen
,
R. L.
, and
Haines
,
H. K.
,
1987
, “
Rapid Measurement of Minimum Miscibility Pressure With the Rising-Bubble Apparatus
,”
SPE Reservoir. Eng.
,
2
(
4
), pp.
523
527
. 10.2118/13114-PA
16.
Elsharkawy
,
A. M.
,
Poettmann
,
F. H.
, and
Christiansen
,
R. L.
,
1996
, “
Measuring CO2 Minimum Miscibility Pressures: Slim-Tube or Rising-Bubble Method?
,”
Energy Fuels
,
10
(
2
), pp.
443
449
. 10.1021/ef940212f
17.
Johns
,
R. T.
,
Sah
,
P.
, and
Solano
,
R.
,
2002
, “
Effect of Dispersion on Local Displacement Efficiency for Multicomponent Enriched-Gas Floods Above the Minimum Miscibility Enrichment
,”
SPE Reservoir. Eval. Eng.
,
5
(
1
), pp.
4
10
. 10.2118/75806-PA
18.
Metcalfe
,
R. S.
,
Fussell
,
D. D.
, and
Shelton
,
J. L.
,
1973
, “
A Multicell Equilibrium Separation Model for the Study of Multiple Contact Miscibility in Rich-Gas Drives
,”
Soc. Pet. Eng. J.
,
13
(
3
), pp.
147
155
. 10.2118/3995-PA
19.
Neau
,
E.
,
Avaullée
,
L.
, and
Jaubert
,
J. N.
,
1996
, “
A New Algorithm for Enhanced Oil Recovery Calculations
,”
Fluid Phase Equilib.
,
117
(
1–2
), pp.
265
272
. 10.1016/0378-3812(95)02962-1
20.
Buckley
,
S. E.
, and
Leverett
,
M. C.
,
1942
, “
Mechanism of Fluid Displacement in Sands
,”
Trans. AIME
,
146
(
1
), pp.
107
116
. 10.2118/942107-G
21.
Helfferich
,
F. G.
,
1986
, “
Theory of Multicomponent Chromatography a State-of-the-Art Report
,”
J. Chromatogr. A
,
373
(
1
), pp.
45
60
. 10.1016/S0021-9673(00)80207-1
22.
Wang
,
Y.
, and
Orr
,
F. M.
,
1997
, “
Analytical Calculation of Minimum Miscibility Pressure
,”
Fluid Phase Equilib.
,
139
(
1–2
), pp.
101
124
. 10.1016/S0378-3812(97)00179-9
23.
Johns
,
R. T.
, and
Orr
,
F. M.
,
1996
, “
Miscible Gas Displacement of Multicomponent Oils
,”
SPE J.
,
1
(
1
), pp.
39
50
. 10.2118/30798-PA
24.
Jessen
,
K.
,
Michelsen
,
M. L.
, and
Stenby
,
E. H.
,
1998
, “
Global Approach for Calculation of Minimum Miscibility Pressure
,”
Fluid Phase Equilib.
,
153
(
2
), pp.
251
263
. 10.1016/S0378-3812(98)00414-2
25.
Yuan
,
H.
, and
Johns
,
R. T.
,
2005
, “
Simplified Method for Calculation of Minimum Miscibility Pressure or Enrichment
,”
SPE J.
,
10
(
4
), pp.
416
425
. 10.2118/77381-PA
26.
Holm
,
L. W.
, and
Josendal
,
V. A.
,
1974
, “
Mechanisms of Oil Displacement by Carbon Dioxide
,”
J. Pet. Technol.
,
26
(
12
), pp.
1427
1438
. 10.2118/4736-PA
27.
Benham
,
A. L.
,
Dowden
,
W. E.
, and
Kunzman
,
W.
,
1960
, “
Miscible Fluid Displacement-Prediction of Miscibility
,”
Trans. AIME
,
219
(
1
), pp.
229
237
. 10.2118/1484-G
28.
Mungan
,
N.
,
1981
, “
Carbon Dioxide Flooding-Fundamentals
,”
J. Can. Pet. Technol.
,
20
(
1
), pp.
88
89
. 10.2118/81-01-03
29.
Lee
,
J. I.
,
1979
,
Research Report RR-40, Petroleum Recovery Institute, Calgary, Alberta, Canada
.
30.
Yellig
,
W. F.
, and
Metcalfe
,
R. S.
,
1980
, “
Determination and Prediction of CO2 Minimum Miscibility Pressures (Includes Associated Paper 8876)
,”
J. Pet. Technol.
,
32
(
1
), pp.
160
168
. 10.2118/7477-PA
31.
Johnson
,
J. P.
, and
Pollin
,
J. S.
,
1981
, “
Measurement and Correlation of CO2 Miscibility Pressures
,”
SPE/DOE Enhanced Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 5–8
,
Society of Petroleum Engineers
.
32.
Alston
,
R. B.
,
Kokolis
,
G. P.
, and
James
,
C. F.
,
1985
, “
CO2 Minimum Miscibility Pressure: A Correlation for Impure CO2 Streams and Live Oil Systems
,”
Soc. Pet. Eng. J.
,
25
(
2
), pp.
268
274
. 10.2118/11959-PA
33.
Sebastian
,
H. M.
,
Wenger
,
R. S.
, and
Renner
,
T. A.
,
1985
, “
Correlation of Minimum Miscibility Pressure for Impure CO2 Streams
,”
J. Pet. Technol.
,
37
(
11
), pp.
2076
2082
. 10.2118/12648-PA
34.
Stalkup
,
L. K.
,
1983
, “
RTD 2(1) Oil Recovery by Miscible Displacement
,”
11th World Petroleum Congress
,
London
,
Aug. 28–Sept. 2
.
35.
Glaso
,
O.
,
1985
, “
Generalized Minimum Miscibility Pressure Correlation (Includes Associated Papers 15845 and 16287)
,”
Soc. Pet. Eng. J.
,
25
(
6
), pp.
927
934
. 10.2118/12893-PA
36.
Enick
,
R. M.
,
Holder
,
G. D.
, and
Morsi
,
B. I.
,
1988
, “
A Thermodynamic Correlation for the Minimum Miscibility Pressure in CO2 Flooding of Petroleum Reservoirs
,”
SPE Reservoir. Eng.
,
3
(
1
), pp.
81
92
. 10.2118/14518-PA
37.
Nasrifar
,
K.
, and
Moshfeghian
,
M.
,
2001
, “
A New Cubic Equation of State for Simple Fluids: Pure and Mixture
,”
Fluid Phase Equilib.
,
190
(
1–2
), pp.
73
88
. 10.1016/S0378-3812(01)00592-1
38.
Nasrifar
,
K.
, and
Moshfeghian
,
M.
,
2002
, “
Liquid–Liquid Equilibria of Water–Hydrocarbon Systems From Cubic Equations of State
,”
Fluid Phase Equilib.
,
193
(
1–2
), pp.
261
275
. 10.1016/S0378-3812(01)00743-9
39.
Nasrifar
,
K.
, and
Moshfeghian
,
M.
,
2004
, “
Application of an Improved Equation of State to Reservoir Fluids: Computation of Minimum Miscibility Pressure
,”
J. Pet. Sci. Eng.
,
42
(
2–4
), pp.
223
234
. 10.1016/j.petrol.2003.12.013
40.
Shokir
,
E. M. E.-M.
,
2007
, “
CO2–Oil Minimum Miscibility Pressure Model for Impure and Pure CO2 Streams
,”
J. Pet. Sci. Eng.
,
58
(
1–2
), pp.
173
185
. 10.1016/j.petrol.2006.12.001
41.
Cronquist
,
C.
,
1978
, “
Carbon Dioxide Dynamic Displacement With Light Reservoir Oils
,”
Fourth Annual U.S. DOE Symposium
,
Tulsa, OK
,
Aug. 28–30
, pp.
18
23
.
42.
Kovarik
,
F. S.
,
1985
, “
A Minimum Miscibility Pressure Study Using Impure CO2 and West Texas Oil Systems: Data Base, Correlations, and Compositional Simulation
,”
SPE Production Technology Symposium
,
Lubbock, TX
,
Nov. 11–12
,
Society of Petroleum Engineers
.
43.
Eakin
,
B. E.
, and
Mitch
,
F. J.
,
1988
, “
Measurement and Correlation of Miscibility Pressures of Reservoir Oils
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 2–5
, Society of Petroleum Engineers.
44.
Dong
,
M.
,
1999
,
Task 3 — Minimum Miscibility Pressure (MMP) Studies, in the Technical Report: Potential of Greenhouse Storage and Utilization through Enhanced Oil Recovery, Saskatchewan, Canada
.
45.
Huang
,
Y. F.
,
Huang
,
G. H.
,
Dong
,
M. Z.
, and
Feng
,
G. M.
,
2003
, “
Development of an Artificial Neural Network Model for Predicting Minimum Miscibility Pressure in CO2 Flooding
,”
J. Pet. Sci. Eng.
,
37
(
1–2
), pp.
83
95
. 10.1016/S0920-4105(02)00312-1
46.
Emera
,
M. K.
, and
Sarma
,
H. K.
,
2005
, “
Use of Genetic Algorithm to Estimate CO2–Oil Minimum Miscibility Pressure—a Key Parameter in Design of CO2 Miscible Flood
,”
J. Pet. Sci. Eng.
,
46
(
1–2
), pp.
37
52
. 10.1016/j.petrol.2004.10.001
47.
Shokrollahi
,
A.
,
Arabloo
,
M.
,
Gharagheizi
,
F.
, and
Mohammadi
,
A. H.
,
2013
, “
Intelligent Model for Prediction of CO2—Reservoir Oil Minimum Miscibility Pressure
,”
Fuel
,
112
(
1
), pp.
375
384
. 10.1016/j.fuel.2013.04.036
48.
Rezaei
,
M.
,
Eftekhari
,
M.
,
Schaffie
,
M.
, and
Ranjbar
,
M.
,
2013
, “
A CO2-Oil Minimum Miscibility Pressure Model Based on Multi-Gene Genetic Programming
,”
Energy Explor. Exploit.
,
31
(
4
), pp.
607
622
. 10.1260/0144-5987.31.4.607
49.
Kamari
,
A.
,
Arabloo
,
M.
,
Shokrollahi
,
A.
,
Gharagheizi
,
F.
, and
Mohammadi
,
A. H.
,
2015
, “
Rapid Method to Estimate the Minimum Miscibility Pressure (MMP) in Live Reservoir Oil Systems During CO2 Flooding
,”
Fuel
,
153
(
1
), pp.
310
319
. 10.1016/j.fuel.2015.02.087
50.
Tatar
,
A.
,
Shokrollahi
,
A.
,
Mesbah
,
M.
,
Rashid
,
S.
,
Arabloo
,
M.
, and
Bahadori
,
A.
,
2013
, “
Implementing Radial Basis Function Networks for Modeling CO2-Reservoir Oil Minimum Miscibility Pressure
,”
J. Nat. Gas Sci. Eng.
,
15
(
1
), pp.
82
92
. 10.1016/j.jngse.2013.09.008
51.
Chen
,
G.
,
Fu
,
K.
,
Liang
,
Z.
,
Sema
,
T.
,
Li
,
C.
,
Tontiwachwuthikul
,
P.
, and
Idem
,
R.
,
2014
, “
The Genetic Algorithm Based Back Propagation Neural Network for MMP Prediction in CO2-EOR Process
,”
Fuel
,
126
(
1
), pp.
202
212
. 10.1016/j.fuel.2014.02.034
52.
Hemmati-Sarapardeh
,
A.
,
Ghazanfari
,
M.-H.
,
Ayatollahi
,
S.
, and
Masihi
,
M.
,
2016
, “
Accurate Determination of the CO2-Crude Oil Minimum Miscibility Pressure of Pure and Impure CO2 Streams: A Robust Modelling Approach
,”
Can. J. Chem. Eng.
,
94
(
2
), pp.
253
261
. 10.1002/cjce.22387
53.
Zhong
,
Z.
, and
Carr
,
T. R.
,
2016
, “
Application of Mixed Kernels Function (MKF) Based Support Vector Regression Model (SVR) for CO2—Reservoir Oil Minimum Miscibility Pressure Prediction
,”
Fuel
,
184
(
1
), pp.
590
603
. 10.1016/j.fuel.2016.07.030
54.
Zendehboudi
,
S.
,
Ahmadi
,
M. A.
,
Bahadori
,
A.
,
Shafiei
,
A.
, and
Babadagli
,
T.
,
2013
, “
A Developed Smart Technique to Predict Minimum Miscible Pressure-EOR Implications
,”
Can. J. Chem. Eng.
,
91
(
7
), pp.
1325
1337
. 10.1002/cjce.21802
55.
Sayyad
,
H.
,
Manshad
,
A. K.
, and
Rostami
,
H.
,
2014
, “
Application of Hybrid Neural Particle Swarm Optimization Algorithm for Prediction of MMP
,”
Fuel
,
116
(
1
), pp.
625
633
. 10.1016/j.fuel.2013.08.076
56.
Karkevandi-Talkhooncheh
,
A.
,
Hajirezaie
,
S.
,
Hemmati-Sarapardeh
,
A.
,
Husein
,
M. M.
,
Karan
,
K.
, and
Sharifi
,
M.
,
2017
, “
Application of Adaptive Neuro Fuzzy Interface System Optimized with Evolutionary Algorithms for Modeling CO2-Crude Oil Minimum Miscibility Pressure
,”
Fuel
,
205
(
1
), pp.
34
45
. 10.1016/j.fuel.2017.05.026
57.
Karkevandi-Talkhooncheh
,
A.
,
Rostami
,
A.
,
Hemmati-Sarapardeh
,
A.
,
Ahmadi
,
M.
,
Husein
,
M. M.
, and
Dabir
,
B.
,
2018
, “
Modeling Minimum Miscibility Pressure During Pure and Impure CO2 Flooding Using Hybrid of Radial Basis Function Neural Network and Evolutionary Techniques
,”
Fuel
,
220
(
1
), pp.
270
282
. 10.1016/j.fuel.2018.01.101
58.
Matheron
,
G.
,
1973
, “
The Intrinsic Random Functions and Their Applications
,”
Adv. Appl. Probab.
,
5
(
3
), pp.
439
468
. 10.2307/1425829
59.
Journel
,
A. G.
, and
Huijbregts
,
C. J.
,
1978
,
Mining Geostatistics
,
Academic Press
,
London, UK
.
60.
Daley
,
R.
,
1995
, “
Atmospheric Data Analysis
,”
La Météorologie
,
8
(
9
), p.
95
. 10.4267/2042/51948
61.
Schulz
,
E.
,
Speekenbrink
,
M.
, and
Krause
,
A.
,
2018
, “
A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions
,”
J. Math. Psychol.
,
85
(
1
), pp.
1
16
. 10.1016/j.jmp.2018.03.001
62.
Metcalfe
,
R.
,
1982
, “
Effects of Impurities on Minimum Miscibility Pressures and Minimum Enrichment Levels for CO2 and Rich-Gas Displacements
,”
Soc. Pet. Eng. J.
,
22
(
2
), pp.
219
225
. 10.2118/9230-PA
63.
Thakur
,
G. C.
,
Lin
,
C. J.
, and
Patel
,
Y. R.
,
1984
, “
CO2 Minitest, Little Knife Field, ND: A Case History
,”
SPE Enhanced Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 15–18
, Society of Petroleum Engineers.
64.
Gharbi
,
R. B.
, and
Elsharkawy
,
A. M.
,
1997
, “
Neural Network Model for Estimating The PVT Properties of Middle East Crude Oils
,”
Middle East Oil Show and Conference
,
Kuala Lumpur, Malaysia
,
Apr. 14–16
, Society of Petroleum Engineers.
65.
Bon
,
J.
,
Emera
,
M. K.
, and
Sarma
,
H. K.
,
2006
, “
An Experimental Study and Genetic Algorithm (GA) Correlation to Explore the Effect of NC5 on Impure CO2 Minimum Miscibility Pressure (MMP)
,”
SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Adelaide, Australia
,
Sept. 11–13
, Society of Petroleum Engineers.
66.
Rathmell
,
J. J.
,
Stalkup
,
F. I.
, and
Hassinger
,
R. C.
,
1971
, “
A Laboratory Investigation of Miscible Displacement by Carbon Dioxide
,”
Fall Meeting of the Society of Petroleum Engineers of AIME
,
New Orleans, LA
,
Oct. 3–6
, Society of Petroleum Engineers.
67.
Harmon
,
R. A.
, and
Grigg
,
R. B.
,
1988
, “
Vapor-Density Measurement for Estimating Minimum Miscibility Pressure(Includes Associated Papers 19118 and 19500)
,”
SPE Reservoir. Eng.
,
3
(
4
), pp.
1215
1220
. 10.2118/15403-PA
68.
Jacobson
,
H. A.
,
1972
, “
Acid Gases and Their Contribution to Miscibility
,”
J. Can. Pet. Technol.
,
11
(
2
), pp.
57
58
. 10.2118/72-02-03
69.
Graue
,
D. J.
, and
Zana
,
E. T.
,
1981
, “
Study of a Possible CO2 Flood in Rangely Field
,”
J. Pet. Technol.
,
33
(
7
), pp.
1312
1318
. 10.2118/7060-PA
70.
O’Hagan
,
A.
,
1978
, “
Curve Fitting and Optimal Design for Prediction
,”
J. R. Stat. Soc. Ser. B Methodol.
,
40
(
1
), pp.
1
24
.
71.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
72.
Rasmussen
,
C. E.
,
1996
,
Evaluation of Gaussian Processes and Other Methods for Non-Linear Regression
,
University of Toronto
,
Toronto
.
73.
Seeger
,
M.
,
2004
, “
Gaussian Processes for Machine Learning
,”
Int. J. Neural Syst.
,
14
(
2
), pp.
69
106
. 10.1142/S0129065704001899
74.
Neal
,
R. M.
,
1997
,
Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification, Technical Report No. 9702, Department of Statistics, University of Toronto, Ontario, Canada
.
You do not currently have access to this content.