Abstract

Surge/swab pressure is a crucial parameter that provokes well-control problems such as fluid loss, fractured formations, fluid influx, and kick. Thus, a precise estimation of differential pressure is required to evade any unforeseen drilling difficulties. The existing predictive models are based on narrow-slot approximation methods and consider the effect of drilling string axial movement on downhole pressure surges. However, it ignores the impact on the boundaries of the annular fluid velocity zone by the tripping velocity. In this research, a simplified model is developed using the flow velocity profile generated in the annulus by the tripping operation and the concentric annular Couette fluid flow phenomena for power-law fluid. A comparative study is performed with the existing analytical models and the experimental data to validate the developed model. The obtained results are convincingly in good agreement with the analytical and experimental data. A parametric study is performed to identify the effect of various parameters on surge/swab pressure. It is found that the diameter ratio has a significant impact on pressure differential with the increase in the tripping velocity. The fluid behavior index exhibits a considerable effect, and fluid consistency index shows a minor effect on the surge pressure gradient. The simplified developed model requires less numerical analysis to determine the outcomes for varying industrial applications, especially petroleum drilling operations.

References

1.
Erge
,
O.
,
Ozbayoglu
,
E. M.
,
Miska
,
S.
,
Yu
,
M.
,
Takach
,
N.
,
Saasen
,
A.
, and
May
,
R.
,
2015
, “
The Effects of Drillstring-Eccentricity, -Rotation, and –Buckling Configurations on Annular Frictional Pressure Losses While Circulating Yield-Power-Law Fluids
,”
SPE Drill. Complet.
,
30
(
3
), pp.
257
271
. 10.2118/167950-PA
2.
Crespo
,
F.
,
2011
, “
Experimental Study and Modelling of Surge and Swab Pressures for Yield-Power Law Drilling Fluids
,”
Master's thesis
,
Melbourne School of Petroleum and Geological Engineering, University of Oklahoma
,
Norman, OK
.
3.
Erge
,
O.
,
Akin
,
S.
, and
Gucuyener
,
I. H.
,
2018
, “
Accurate Modeling of Surge and Swab Pressures of Yield Power Law Fluids in Concentric Annuli
,”
SPE/IADC Middle East Drilling Technology Conference and Exhibition, Society of Petroleum Engineers
,
Abu Dhabi, UAE
,
Jan. 29–31
.
4.
Schubert
,
J.
,
2010
, “
Technology Focus: Well Control
,”
J. Pet. Technol.
,
62
(
1
), pp.
56
56
. 10.2118/0110-0056-JPT
5.
Ezeakacha
,
C. P.
, and
Salehi
,
S.
,
2019
, “
A Holistic Approach to Characterize Mud Loss Using Dynamic Mud Filtration Data
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072903
. 10.1115/1.4042281
6.
Kumar
,
A.
,
Nwachukwu
,
J.
, and
Samuel
,
R.
,
2013
, “
Analytical Model to Estimate the Downhole Casing Wear Using the Total Wellbore Energy
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
42901
. 10.1115/1.4023550
7.
Zhang
,
Y.
,
Hao
,
Y.
, and
Samuel
,
R.
,
2013
, “
Analytical Model to Estimate the Drag Forces for Microhole Coiled Tubing Drilling
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
033101
. 10.1115/1.4024044
8.
Huangang
,
Z.
,
Shujiang
,
W.
,
Zongqing
,
L.
,
Xiuliang
,
Y.
,
Zhongwen
,
S.
, and
Peibin
,
G.
,
2019
, “
A New High-Precision Timely Monitoring and Metering System for Early Kick and Loss
,”
Nat. Gas Ind. B
,
6
(
4
), pp.
394
398
. ISSN 2352-8540, 10.1016/j.ngib.2019.01.015.
9.
Hongwei
,
Y.
,
Jun
,
L.
,
Gonghui
,
L.
,
Chao
,
W.
,
Hailong
,
J.
,
Kuidong
,
L.
, and
Bin
,
W.
,
2019
, “
A New Method for Early Gas Kick Detection Based on the Consistencies and Differences of Bottomhole Pressures at Two Measured Points
,”
J. Pet. Sci. Eng.
,
176
, pp.
1095
1105
. 10.1016/j.petrol.2019.02.026
10.
Haciislamoglu
,
M.
, and
Langlinais
,
J.
,
1991
, “
Effect of Pipe Eccentricity on Surge Pressures
,”
ASME J. Energy Resour.Technol.
,
113
(
3
), pp.
157
160
. 10.1115/1.2905797
11.
Crespo
,
F. E.
,
Ahmed
,
R. M.
,
Saasen
,
A.
,
Enfis
,
M.
, and
Amani
,
M.
,
2012
, “
Surge-and-Swab Pressure Predictions for Yield-Power-Law Drilling Fluids
,”
SPE Drilling Completion
,
27
(
4
), pp.
574
585
. 10.2118/138938-PA
12.
Burkhardt
,
J. A.
,
1961
, “
Wellbore Pressure Surges Produced by Pipe Movement
,”
J. Pet. Technol.
,
13
(
6
), pp.
595
605
. 10.2118/1546-G-PA
13.
Schuh
,
F. J.
,
1964
, “
Computer Makes Surge-Pressure Calculations Useful
,”
Oil Gas J.
,
31
(
62
), pp.
96
104
.
14.
Ettehadi
,
A.
, and
Altun
,
G.
,
2018
, “
Functional and Practical Analytical Pressure Surges Model Through Herschel-Bulkley Fluids
,”
J. Pet. Sci. Eng.
,
171
, pp.
748
759
. 10.1016/j.petrol.2018.07.078
15.
Chukwu
,
G. A.
,
1990
, “
Surge and Swab Pressure Computed for Couette Flow of Power-Law Fluids
,”
Ph.D. thesis
,
Oklahoma University
,
Norman, OK
.
16.
Haige
,
W.
, and
Xisheng
,
L.
,
1996
, “
Study on Steady Surge Pressure for Yield-Pseudoplastic Fluid in a Concentric Annulus
,”
Appl. Math. Mech.
,
17
(
1
), pp.
15
23
. 10.1007/BF00131290
17.
Chien
,
S. F.
,
1968
, “
Laminar Flow Pressure Loss and Flow Pattern Transition of Bingham Plastics in Pipes and Annuli
”,
Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Pergamon
,
7
(
4
), pp.
339
356
.
18.
Osorio
,
F.
, and
Steffe
,
J. F.
,
1991
, “
Evaluating Herschel-Bulkley Fluids With Back Extrusion (Annular Pumping) Technique
,”
Rheologica Acta
,
30
(
6
), pp.
549
558
. 10.1007/BF00444373
19.
Cannon
,
G. E.
,
1934
, “Changes in Hydrostatic Pressure Due to Withdrawing Drill Pipe From the Hole,”
Drilling and Production Practice
,
American Petroleum Institute
,
New York
, p.
7
.
20.
Goins
,
W. G.
,
Weichert
,
J. P.
,
Burba Jr.
,
J. L.
,
Dawson Jr.
,
D. D.
, and
Teplitz
,
A. J.
,
1951
,
Drilling and Production Practice
,
American Petroleum Institute
,
New York
, p.
8
.
21.
Horn
,
A. J.
,
1950
, “Well Blowouts in California Drilling Operations Causes and Suggestions for Prevention,”
Drilling and Production Practice
,
American Petroleum Institute
,
New York
, p.
17
.
22.
Cardwell
,
W. T.
, Jr.
,
1953
, “Pressure Changes in Drilling Wells Caused by Pipe Movement,”
Drilling and Production Practice
,
American Petroleum Institute
,
New York
, p.
16
.
23.
Ormsby
,
G. S.
,
1954
, “Calculation and Control of Mud Pressures in Drilling and Completion Operations,”
Drilling and Production Practice
,
American Petroleum Institute
,
New York
, p.
12
.
24.
Clark
,
E. H. J.
,
1955
, “
Bottom-Hole Pressure Surges While Running Pipe
,”
Petroleum Mechanical Engineering Conference, The American Society of Mechanical Engineers
,
Los Angeles, CA
,
Sept. 26–29
.
25.
Fontenot
,
J. E.
, and
Clark
,
R. K.
,
1974
, “
An Improved Method for Calculating Swab and Surge Pressures and Circulating Pressures in a Drilling Well
,”
Soc. Pet. Eng. J.
,
14
(
5
), pp.
451
462
. 10.2118/4521-PA
26.
Malik
,
R.
, and
Shenoy
,
U. V.
,
1991
, “
Generalized Annular Couette Flow of a Power-Law Fluid
,”
Ind. Eng. Chem. Res.
,
30
(
8
), pp.
1950
1954
. 10.1021/ie00056a043
27.
Filip
,
P.
, and
David
,
J.
,
2003
, “
Axial Couette–Poiseuille Flow of Power-Law Viscoplastic Fluids in Concentric Annuli
,”
J. Pet. Sci. Eng.
,
40
(
3
), pp.
111
119
. 10.1016/S0920-4105(03)00107-4
28.
Gjerstad
,
K.
, and
Time
,
R. W.
,
2015
, “
Simplified Explicit Flow Equations for Herschel-Bulkley Fluids in Couette-Poiseuille Flow–For Real-Time Surge and Swab Modeling in Drilling
,”
SPE J.
,
20
(
3
), pp.
610
627
. 10.2118/170246-PA
29.
Crespo
,
F.
, and
Ahmed
,
R.
,
2013
, “
A Simplified Surge and Swab Pressure Model for Yield Power Law Fluids
,”
J. Pet. Sci. Eng.
,
101
, pp.
12
20
. 10.1016/j.petrol.2012.10.001
30.
He
,
S.
,
Srivastav
,
R.
,
Tang
,
M.
, and
Ahmed
,
R.
,
2016
, “
A New Simplified Surge and Swab Pressure Model for Yield-Power-Law Drilling Fluids
,”
J. Nat. Gas Sci.Eng.
,
28
, pp.
184
192
. 10.1016/j.jngse.2015.11.027
31.
Gjerstad
,
K.
,
Time
,
R. W.
, and
Bjørkevoll
,
K. S.
,
2012
, “
Simplified Explicit Flow Equations for Bingham Plastics in Couette-Poiseuille Flow—For Dynamic Surge and Swab Modeling
,”
J. Nonnewtonian Fluid Mech.
,
175
–176, pp.
55
63
. 10.1016/j.jnnfm.2012.03.002
32.
Lin
,
S. H.
, and
Hsu
,
C. C.
,
1980
, “
Generalized Couette Flow of a Non-Newtonian Fluid in Annuli
,”
Ind. Eng. Chem. Fundam.
,
19
(
4
), pp.
421
424
. 10.1021/i160076a017
33.
Liu
,
Y. Q.
, and
Zhu
,
K. Q.
,
2010
, “
Axial Couette-Poiseuille Flow of Bingham Fluids Through Concentric Annuli
,”
J. Nonnewtonian Fluid Mech.
,
165
(
21
–22), pp.
1494
1504
. 10.1016/j.jnnfm.2010.07.013
34.
Zhang
,
F.
,
Kang
,
Y.
,
Wang
,
Z.
,
Miska
,
S.
,
Yu
,
M.
, and
Zamanipour
,
Z.
,
2016
, “
Real-Time Wellbore Stability Evaluation for Deepwater Drilling During Tripping
,”
SPE Deepwater Drilling and Completions Conference, Society of Petroleum Engineers
,
Galveston, TX
,
Sept. 14–15
.
35.
Wang
,
Y.
, and
Chukwu
,
G. A.
,
1997
, “
Application of Unsteady Couette Flow of Non-Newtonian Power-Law Fluids in Concentric Annular Wellbore
,”
J. Pet. Sci. Eng.
,
17
(
3
–4), pp.
229
235
. 10.1016/S0920-4105(96)00067-8
36.
Bing
,
Z.
,
Kaiji
,
Z.
, and
Qiji
,
Y.
,
1995
, “
Equations Help Calculate Surge and Swab Pressures in Inclined Wells
,”
Oil Gas J.
,
93
(
38
), pp.
74
77
.
37.
Mitchell
,
R. F.
,
1988
, “
Dynamic Surge/Swab Pressure Predictions
,”
SPE Drilling Eng.
,
3
(
3
), pp.
325
333
. 10.2118/16156-PA
38.
Lal
,
M.
,
1983
, “
Surge and Swab Modeling for Dynamic Pressures and Safe Trip Velocities
,”
IADC/SPE Drilling Conference
,
New Orleans, LA
,
Feb. 20–23
.
39.
Lubinski
,
A.
,
Hsu
,
F. H.
, and
Nolte
,
K. G.
,
1977
, “
Transient Pressure Surges Due to Pipe Movement in an Oil Well
,”
Rev. Inst. Fr. Pét.
,
32
(
3
), pp.
307
348
. 10.2516/ogst:1977019
40.
Hanks
,
R. W.
,
1979
, “
The Axial Laminar Flow of Yield-Pseudoplastic Fluids in a Concentric Annulus
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
3
), pp.
488
493
. 10.1021/i260071a024
41.
Hanks
,
R. W.
, and
Larsen
,
K. M.
,
1979
, “
The Flow of Power-Law Non-Newtonian Fluids in Concentric Annuli
,”
Ind. Eng. Chem. Fundam.
,
18
(
1
), pp.
33
35
. 10.1021/i160069a008
42.
Statoil
,
2014
, “
Basic Well Completion Report rev1 OzDelta-1
”, EP128:
Australia
, p.
45
.
43.
Tang
,
M.
,
Xiong
,
J.
, and
He
,
S.
,
2014
, “
A New Model for Computing Surge/Swab Pressure in Horizontal Wells and Analysis of Influencing Factors
,”
J. Nat. Gas Sci. Eng.
,
19
, pp.
337
343
. 10.1016/j.jngse.2014.05.026
You do not currently have access to this content.