Abstract

This work assesses the evolution of acid gases from raw and torrefied biomass (distiller’s dried grains with solubles and rice husk) combustion in conventional (air) and simulated oxy-combustion (oxygen/carbon dioxide) environments. Emphasis was placed on the latter, as oxy-combustion of renewable or waste biomass, coupled with carbon capture and utilization or sequestration, could be a benefit toward mitigating global warming. The oxy-combustion environments were set to 21%O2/79%CO2 and 30%O2/70%CO2. Results revealed that combustion of either raw or torrefied biomass generated CO2 emissions that were lower in 21%O2/79%CO2 than at 30%O2/70%CO2, whereas CO emissions exhibited the opposite trend. Emissions of CO from combustion in air were drastically lower than those in the two oxy-combustion environments and those in 21%O2/79%CO2 were the highest. Emissions of NO followed the same trend as those of CO2, while HCN emissions followed the same trend as those of CO. Emissions of NO were higher than those of HCN. The emissions of SO2 were lower in oxy-combustion than in air combustion. Moreover, combustion of torrefied biomass generated higher CO2 and NO, comparable CO and SO2, and lower HCN emissions than combustion of raw biomass. Out of the three conditions tested in this study, oxy-combustion of biomass, either in the raw and torrefied state, attained the highest combustion effectiveness and caused the lowest CO, HCN, and SO2 emissions when the gas composition was 30%O2/70%CO2.

References

References
1.
Leckner
,
B.
, and
Gómez-Barea
,
A.
,
2014
, “
Oxy-Fuel Combustion in Circulating Fluidized Bed Boilers
,”
Appl. Energy
,
125
, pp.
308
318
. 10.1016/j.apenergy.2014.03.050
2.
Meng
,
X.
,
Zhou
,
W.
,
Rokni
,
E.
,
Zhao
,
H.
,
Sun
,
R.
, and
Levendis
,
Y.
,
2019
, “
Effects of Air Flowrate on the Combustion and Emissions of Blended Corn Straw and Pinewood Wastes
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042205
. 10.1115/1.4042005
3.
Rokni
,
E.
,
Ren
,
X.
,
Panahi
,
A.
, and
Levendis
,
Y. A.
,
2018
, “
Emissions of SO2, NOx, CO2, and HCl From Co-Firing of Coals With Raw and Torrefied Biomass Fuels
,”
Fuel
,
211
, pp.
363
374
. 10.1016/j.fuel.2017.09.049
4.
Tumuluru
,
J. S.
,
Sokhansanj
,
S.
,
Wright
,
C. T.
,
Boardman
,
R. D.
, and
Yancey
,
N. A.
,
2011
, “
A Review on Biomass Classification and Composition, Co-Firing Issues and Pretreatment Methods
,”
Biofuels Bioprod. Biorefin.
,
5
(
6
), pp.
683
707
. 10.1002/bbb.324
5.
Bergman
,
P. C.
,
Boersma
,
A.
,
Zwart
,
R. W.
, and
Kiel
,
J. H.
,
2005
,
Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations
, https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C–05-013.
6.
Uslu
,
A.
,
Faaij
,
A. P. C.
, and
Bergman
,
P. C. A.
,
2008
, “
Pre-Treatment Technologies, and Their Effect on International Bioenergy Supply Chain Logistics. Techno-Economic Evaluation of Torrefaction, Fast Pyrolysis and Pelletisation
,”
Energy
,
33
(
8
), pp.
1206
1223
. 10.1016/j.energy.2008.03.007
7.
Ren
,
X.
,
Sun
,
R.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
. 10.1016/j.fuel.2016.10.017
8.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2018
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
. 10.1115/1.4038313
9.
Toftegaard
,
M. B.
,
Brix
,
J.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Jensen
,
A. D.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
. 10.1016/j.pecs.2010.02.001
10.
Feron
,
P. H. M.
, and
Hendriks
,
C. A.
,
2005
, “
CO2 Capture Process Principles and Costs
,”
Oil Gas Sci. Technol.
,
60
(
3
), pp.
451
459
. 10.2516/ogst:2005027
11.
Gozalpour
,
F.
,
Ren
,
S. R.
, and
Tohidi
,
B.
,
2005
, “
CO2 EOR and Storage in Oil Reservoirs
,”
Oil Gas Sci. Technol.
,
60
(
3
), pp.
537
546
. 10.2516/ogst:2005036
12.
Chen
,
L.
,
Yong
,
S. Z.
, and
Ghoniem
,
A. F.
,
2012
, “
Oxy-Fuel Combustion of Pulverized Coal: Characterization, Fundamentals, Stabilization and CFD Modeling
,”
Prog. Energy Combust. Sci.
,
38
(
2
), pp.
156
214
. 10.1016/j.pecs.2011.09.003
13.
Normann
,
F.
,
Andersson
,
K.
,
Leckner
,
B.
, and
Johnsson
,
F.
,
2009
, “
Emission Control of Nitrogen Oxides in the Oxy-Fuel Process
,”
Progress Energy Combust. Sci.
,
35
(
5
), pp.
385
397
. 10.1016/j.pecs.2009.04.002
14.
Uddin
,
S. N.
, and
Barreto
,
L.
,
2007
, “
Biomass-Fired Cogeneration Systems With CO2 Capture and Storage
,”
Renew. Energy
,
32
(
6
), pp.
1006
1019
. 10.1016/j.renene.2006.04.009
15.
Azar
,
C.
,
Lindgren
,
K.
,
Larson
,
E.
, and
Möllersten
,
K.
,
2006
, “
Carbon Capture and Storage From Fossil Fuels and Biomass—Costs and Potential Role in Stabilizing the Atmosphere
,”
Clim. Change
,
74
(
1–3
), pp.
47
79
. 10.1007/s10584-005-3484-7
16.
Châtel-Pélage
,
F.
,
Varagani
,
R.
,
Pranda
,
P.
,
Perrin
,
N.
, and
Bose
,
A.
,
2006
, “
Applications of Oxygen for NOx Control and CO2 Capture in Coal-Fired Power Plants
,”
Therm. Sci.
,
10
(
3
), pp.
119
142
. 10.2298/TSCI0603119C
17.
Wall
,
T.
,
Liu
,
Y.
,
Spero
,
C.
,
Elliott
,
L.
,
Khare
,
S.
,
Rathnam
,
R.
,
Zeenathal
,
F.
,
Moghtaderi
,
B.
,
Buhre
,
B.
,
Sheng
,
C.
,
Gupta
,
R.
,
Yamada
,
T.
,
Makino
,
K.
, and
Yu
,
J.
,
2009
, “
An Overview on Oxyfuel Coal Combustion-State of the Art Research and Technology Development
,”
Chem. Eng. Res. Des.
,
87
(
8
), pp.
1003
1016
. 10.1016/j.cherd.2009.02.005
18.
Khatami
,
R.
, and
Levendis
,
Y. A.
,
2015
, “
An Overview of Coal Rank Influence on Ignition and Combustion Phenomena at the Particle Level
,”
Combust. Flame
,
164
(
6
), pp.
22
34
. 10.1016/j.combustflame.2015.10.031
19.
Panahi
,
A.
,
Toole
,
N.
,
Wang
,
X.
, and
Levendis
,
Y. A.
,
2020
, “
On the Minimum Oxygen Requirements for Oxy-Combustion of Torrefied Biomass
,”
Combust. Flame
,
213
, pp.
426
440
. 10.1016/j.combustflame.2019.12.012
20.
Duan
,
L.
,
Duan
,
Y.
,
Zhao
,
C.
, and
Anthony
,
E. J.
,
2015
, “
NO Emission During Co-Firing Coal and Biomass in an Oxy-Fuel Circulating Fluidized Bed Combustor
,”
Fuel
,
150
, pp.
8
13
. 10.1016/j.fuel.2015.01.110
21.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Álvarez
,
L.
,
Gil
,
M. V.
,
Pevida
,
C.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2014
, “
Combustion of Single Biomass Particles in Air and in Oxy-Fuel Conditions
,”
Biomass Bioenergy
,
64
, pp.
162
174
. 10.1016/j.biombioe.2014.03.018
22.
Kosowska-Golachowska
,
M.
,
2016
, “
Oxy-Combustion of Biomass in a Circulating Fluidized Bed
,”
Arch. Thermodyn.
,
37
(
1
), pp.
17
30
. 10.1515/aoter-2016-0002
23.
Kazanc
,
F.
,
Khatami
,
R.
,
Manoel Crnkovic
,
P.
, and
Levendis
,
Y. A.
,
2011
, “
Emissions of NOx and SO2 From Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O2/N2 and O2/CO2 Environments
,”
Energy Fuels
,
25
(
7
), pp.
2850
2861
. 10.1021/ef200413u
24.
Riaza
,
J.
,
Gil
,
M. V.
,
Álvarez
,
L.
,
Pevida
,
C.
,
Pis
,
J. J.
, and
Rubiera
,
F.
,
2012
, “
Oxy-Fuel Combustion of Coal and Biomass Blends
,”
Energy
,
41
(
1
), pp.
429
435
. 10.1016/j.energy.2012.02.057
25.
Shaddix
,
C. R.
, and
Molina
,
A.
,
2011
, “
Fundamental Investigation of NOx Formation During Oxy-Fuel Combustion of Pulverized Coal
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
1723
1730
. 10.1016/j.proci.2010.07.072
26.
Panahi
,
A.
,
Sirumalla
,
S. K.
,
West
,
R. H.
, and
Levendis
,
Y. A.
,
2019
, “
Temperature and Oxygen Partial Pressure Dependencies of the Coal-Bound Nitrogen to NOx Conversion in O2/CO2 Environments
,”
Combust. Flame
,
206
, pp.
98
111
. 10.1016/j.combustflame.2019.04.015
27.
Sher
,
F.
,
Pans
,
M. A.
,
Sun
,
C.
,
Snape
,
C.
, and
Liu
,
H.
,
2018
, “
Oxy-Fuel Combustion Study of Biomass Fuels in a 20 kWth Fluidized Bed Combustor
,”
Fuel
,
215
, pp.
778
786
. 10.1016/j.fuel.2017.11.039
28.
Duan
,
L.
,
Zhao
,
C.
,
Zhou
,
W.
,
Qu
,
C.
, and
Chen
,
X.
,
2011
, “
Effects of Operation Parameters on NO Emission in an Oxy-Fired CFB Combustor
,”
Fuel Process. Technol.
,
92
(
3
), pp.
379
384
. 10.1016/j.fuproc.2010.09.031
29.
Czakiert
,
T.
,
Bis
,
Z.
,
Muskala
,
W.
, and
Nowak
,
W.
,
2006
, “
Fuel Conversion From Oxy-Fuel Combustion in a Circulating Fluidized Bed
,”
Fuel Process. Technol.
,
87
(
6
), pp.
531
538
. 10.1016/j.fuproc.2005.12.003
30.
Farrow
,
T. S.
,
Sun
,
C.
, and
Snape
,
C. E.
,
2015
, “
Impact of CO2 on Biomass Pyrolysis, Nitrogen Partitioning, and Char Combustion in a Drop Tube Furnace
,”
J. Anal. Appl. Pyrolysis
,
113
, pp.
323
331
. 10.1016/j.jaap.2015.02.013
31.
Ren
,
X.
,
Rokni
,
E.
,
Sun
,
R.
,
Meng
,
X.
, and
Levendis
,
Y. A.
,
2017
, “
Evolution of Chlorine-Bearing Gases During Corn Straw Torrefaction at Different Temperatures
,”
Energy Fuels
,
31
(
12
), pp.
13713
13723
. 10.1021/acs.energyfuels.7b02540
32.
Panahi
,
A.
,
Levendis
,
Y. A.
,
Vorobiev
,
N.
, and
Schiemann
,
M.
,
2017
, “
Direct Observations on the Combustion Characteristics of Miscanthus and Beechwood Biomass Including Fusion and Spherodization
,”
Fuel Process. Technol.
,
166
, pp.
41
49
. 10.1016/j.fuproc.2017.05.029
33.
Khatami
,
R.
,
Stivers
,
C.
, and
Levendis
,
Y. A.
,
2012
, “
Ignition Characteristics of Single Coal Particles From Three Different Ranks in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
12
), pp.
3554
3568
. 10.1016/j.combustflame.2012.06.019
34.
Khatami
,
R.
,
Stivers
,
C.
,
Joshi
,
K.
,
Levendis
,
Y. A.
, and
Sarofim
,
A. F.
,
2012
, “
Combustion Behavior of Single Particles From Three Different Coal Ranks and From Sugar Cane Bagasse in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
3
), pp.
1253
1271
. 10.1016/j.combustflame.2011.09.009
35.
Riaza
,
J.
,
Gibbins
,
J.
, and
Chalmers
,
H.
,
2017
, “
Ignition and Combustion of Single Particles of Coal and Biomass
,”
Fuel
,
202
, pp.
650
655
. 10.1016/j.fuel.2017.04.011
36.
Gao
,
S.
,
Zhao
,
J.
,
Wang
,
Z.
,
Fang
,
Y.
,
Wang
,
J.
, and
Huang
,
J.
,
2013
, “
Effect of CO2 on Pyrolysis Behaviors of Lignite
,”
J. Fuel Chem. Technol.
,
41
(
3
), pp.
257
264
. 10.1016/S1872-5813(13)60017-1
37.
Skeen
,
S. A.
,
Kumfer
,
B. M.
, and
Axelbaum
,
R. L.
,
2010
, “
Nitric Oxide Emissions During Coal and Coal/Biomass Combustion Under Air-Fired and Oxy-Fuel Conditions
,”
Energy Fuels
,
24
(
8
), pp.
4144
4152
. 10.1021/ef100299n
38.
Hecht
,
E. S.
,
Shaddix
,
C. R.
,
Molina
,
A.
, and
Haynes
,
B. S.
,
2011
, “
Effect of CO2 Gasification Reaction on Oxy-Combustion of Pulverized Coal Char
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
1699
1706
. 10.1016/j.proci.2010.07.087
39.
Shao
,
L. M.
,
Fan
,
S. S.
,
Zhang
,
H.
,
Yao
,
Q. S.
, and
He
,
P. J.
,
2013
, “
SO2 and NOx Emissions From Sludge Combustion in a CO2/O2 Atmosphere
,”
Fuel
,
109
, pp.
178
183
. 10.1016/j.fuel.2013.01.027
40.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
. 10.1016/0360-1285(89)90017-8
41.
Fenimore
,
C. P.
,
1971
, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
373
380
. 10.1016/S0082-0784(71)80040-1
42.
Dong
,
L.
,
Gao
,
S.
, and
Xu
,
G.
,
2010
, “
NO Reduction Over Biomass Char in the Combustion Process
,”
Energy Fuels
,
24
(
1
), pp.
446
450
. 10.1021/ef900913p
43.
Hu
,
Y.
,
Naito
,
S.
,
Kobayashi
,
N.
, and
Hasatani
,
M.
,
2000
, “
CO2, NOx, and SO2, Emissions From the Combustion of Coal With High Oxygen Concentration Gases
,”
Fuel
,
79
(
15
), pp.
1925
1932
. 10.1016/S0016-2361(00)00047-8
44.
Li
,
Y. H.
,
Radovic
,
L. R.
,
Lu
,
G. Q.
, and
Rudolph
,
V.
,
1999
, “
A New Kinetic Model for the NO-Carbon Reaction
,”
Chem. Eng. Sci.
,
54
(
19
), pp.
4125
4136
. 10.1016/S0009-2509(99)00121-9
45.
Sun
,
S.
,
Cao
,
H.
,
Chen
,
H.
,
Wang
,
X.
,
Qian
,
J.
, and
Wall
,
T.
,
2011
, “
Experimental Study of Influence of Temperature on Fuel-N Conversion and Recycle NO Reduction in Oxyfuel Combustion
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
1731
1738
. 10.1016/j.proci.2010.06.014
46.
Wang
,
C.
,
Liu
,
Y.
,
Zhang
,
X.
, and
Che
,
D.
,
2016
, “
Effect of Volatile-Char Interaction on Nitrogen Oxide Emission During Combustion of Blended Coal
,”
J. Energy Eng.
,
142
(
6
), p.
04016003
. 10.1061/(asce)ey.1943-7897.0000339
47.
Chang
,
L.
,
Xie
,
Z.
,
Xie
,
K. C.
,
Pratt
,
K. C.
,
Hayashi
,
J. I.
,
Chiba
,
T.
, and
Li
,
C.-Z.
,
2003
, “
Formation of NOx Precursors During the Pyrolysis of Coal and Biomass. Part VI. Effects of Gas Atmosphere on the Formation of NH3 and HCN
,”
Fuel
,
82
(
10
), pp.
1159
1166
. 10.1016/S0016-2361(03)00024-3
48.
Giménez-López
,
J.
,
Millera
,
Á
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2015
, “
Interactions of HCN With NO in a CO2 Atmosphere Representative of Oxy-Fuel Combustion Conditions
,”
Energy Fuels
,
29
(
10
), pp.
6593
6597
. 10.1021/acs.energyfuels.5b01282
49.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
. 10.1115/1.4042564
You do not currently have access to this content.