Abstract

In situ combustion (ISC) in a one-dimensional combustion porous tube has been modeled numerically and presented in this article. The numerical model has been developed using the cmg stars (2017.10) software and it was used to model especial cases for validation against published experimental data. A comprehensive chemical reaction scheme has been developed and used to simulate the ISC process in the lab scale. Moreover, co-injection of oxygen with carbon dioxide (O2/CO2); and co-injection of enriched air (O2/N2) have been further investigated. In the case of using (O2/N2) as an oxidizer, increasing the oxygen ratio from 21% to 50% leads to increasing the oil recovery factor from 31.66% to 66.8%, respectively. In the case of using (O2/CO2) as an oxidizer, increasing the oxygen ratio from 21% to 50% leads to increasing the oil recovery factor from 35.77% to 70.3%, respectively. It was found that the co-injection of (O2/CO2) gives higher values of the oil recovery factor compared with that given when oxygen-enriched air (O2/N2) is injected for ISC. The change in the produced cumulative hydrogen and hydrogen sulfide is considered small whether using (O2/CO2) or (O2/N2) as an oxidizer.

References

1.
Alagorni
,
A. H.
,
Yaacob
,
Z. B.
, and
Nour
,
A. H.
,
2015
, “
An Overview of Oil Production Stages: Enhanced Oil Recovery Techniques and Nitrogen Injection
,”
Int. J. Environ. Sci. Dev.
,
6
(
9
), pp.
693
701
. 10.7763/IJESD.2015.V6.682
2.
Taber
,
J. J.
,
David Martin
,
F.
, and
Seright
,
R. S.
,
1996
, “
EOR Screening Criteria Revisited
,”
SPE/DOE Tenth Symposium on Improved Oil Recovery
,
Tulsa, OK
,
Apr. 21–24
, pp.
189
198
.
3.
Mokheimer
,
E.
,
Hamdy
,
M.
,
Abubakar
,
Z.
,
Shakeel
,
M. R.
,
Habib
,
M. A.
, and
Mahmoud
,
M.
,
2019
, “
A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
030801
. 10.1115/1.4041096
4.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E.
,
Al-Shehri
,
D.
, and
Patil
,
S.
,
2019
, “
Heavy Oil Recovery Using In Situ Steam Generated by Thermochemicals: A Numerical Simulation Study
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122903
. 10.1115/1.4043862
5.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E.
,
Habib
,
M. A.
, and
Elkatatny
,
S.
,
2019
, “
Well-Placement Optimization in Heavy Oil Reservoirs Using a Novel Method of In Situ Steam Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032906
. 10.1115/1.4041613
6.
Sandler
,
J.
,
Fowler
,
G.
,
Cheng
,
K.
, and
Kovscek
,
A. R.
,
2014
, “
Solar-Generated Steam for Oil Recovery: Reservoir Simulation, Economic Analysis, and Life Cycle Assessment
,”
Energy Convers. Manage.
,
77
, pp.
721
732
. 10.1016/j.enconman.2013.10.026
7.
Gu
,
H.
,
Cheng
,
L.
,
Huang
,
S.
,
Li
,
B.
,
Shen
,
F.
,
Fang
,
W.
, and
Hu
,
C.
,
2015
, “
Steam Injection for Heavy oil Recovery: Modeling of Wellbore Heat Efficiency and Analysis of Steam Injection Performance
,”
Energy Convers. Manage.
,
97
, pp.
166
177
. 10.1016/j.enconman.2015.03.057
8.
DeMontigny
,
D.
,
Kritpiphat
,
W.
,
Gelowitz
,
D.
, and
Tontiwachwuthikul
,
P.
,
1997
, “
Simultaneous Production of Electricity, Steam, and CO2 From Small Gas-Fired Cogeneration Plants for Enhanced Oil Recovery
,”
Energy Convers. Manage.
,
38
, pp.
S223
S228
. 10.1016/S0196-8904(96)00273-7
9.
Zhengbin
,
W.
,
Huiqing
,
L.
, and
Xue
,
W.
,
2018
, “
Adaptability Research of Thermal–Chemical Assisted Steam Injection in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052901
. 10.1115/1.4038405
10.
Sarathi
,
P. S.
,
1999
,
In-Situ Combustion Handbook—Principles and Practices
,
National Petroleum Technology Office
,
Tulsa, OK
.
11.
Kristensen
,
M. R.
,
Gerritsen
,
M.
,
Thomsen
,
P. G.
,
Michelsen
,
M. L.
, and
Stenby
,
E. H.
,
2006
, “
Efficient Reaction Integration for In-Situ Combustion Simulation
,”
27th International Energy Agency Symposium on Enhanced Oil Recovery
,
May 30
,
International Energy Agency
,
Paris, France
, p.
6
.
12.
Glatz
,
G.
,
Hascakir
,
B.
,
Castanier
,
L.
,
Clemens
,
T.
, and
Kovscek
,
A.
,
2011
, “
Kinetic Cell and Combustion Tube Results for a Central European Crude Oil
,”
SPE Annual Technical Conference and Exhibition
,
Denver
, Paper No. SPE 146089.
13.
Al-Saadoon
,
F. T.
,
1970
, “
Experimental and Statistical Study of Residual Oil Saturation After Gas, Water, and Steam Drive, and Fuel Availability for the In-Situ Combustion Process
,” Ph.D. thesis.
14.
Moschopedis
,
S. E.
, and
Speight
,
J. G.
,
1975
, “
Oxidation of a Bitumen
,”
Fuel
,
54
(
3
), pp.
210
212
. 10.1016/0016-2361(75)90014-9
15.
Babu
,
D. R.
, and
Cormack
,
D. E.
,
1984
, “
Effect of Low-Temperature Oxidation on the Composition of Athabasca Bitumen
,”
Fuel
,
63
(
6
), pp.
858
861
. 10.1016/0016-2361(84)90080-2
16.
Adegbesan
,
K.
,
Donnelly
,
J.
,
Moore
,
R.
, and
Bennion
,
D.
,
1987
, “
Low-Temperature Oxidation Kinetic Parameters for In-Situ Combustion Numerical Simulation
,”
SPE Reservoir Eng.
,
2
(
4
), pp.
573
582
. 10.2118/12004-PA
17.
Ursenbach
,
M.
,
Moore
,
R.
, and
Mehta
,
S.
,
2010
, “
Air Injection in Heavy Oil Reservoirs—A Process Whose Time Has Come (Again)
,”
J. Can. Pet. Technol.
,
49
(
1
), pp.
48
54
. 10.2118/132487-PA
18.
Adewusi
,
V. A.
, and
Greaves
,
M.
,
1991
, “
Forward In Situ Combustion: Oil Recovery and Properties
,”
Fuel
,
70
(
4
), pp.
503
508
. 10.1016/0016-2361(91)90028-9
19.
Hansel
,
J. G.
,
Benning
,
M. A.
, and
Fernbacher
,
J. M.
,
1984
, “
Oxygen In-Situ Combustion for Oil Recovery: Combustion Tube Tests
,”
J. Pet. Technol.
,
36
(
7
), pp.
139
144
. 10.2118/11253-PA
20.
Alvarado
,
V.
, and
Manrique
,
E.
,
2010
, “
Enhanced Oil Recovery: An Update Review
,”
Energies
,
3
(
9
), pp.
1529
1575
. 10.3390/en3091529
21.
Koottungal
,
L.
,
2008
, “W
orldwide EOR Survey
,”
Oil Gas J., 2008
,
106
(
15
), p.
47
.
23.
Geraci
,
M.
,
Ali
,
S. J.
,
Romolt
,
C.
, and
Rossmann
,
R.
,
2017
, “
The Environmental Risks and Oversight of Enhanced Oil Recovery in the United States
.”, Oil and Gas, EOR Risk and Oversight Report. https://www.cleanwateraction.org/publications/EOR-risks
24.
Hart
,
P. R.
,
2017
, “
Hydrocarbon Mobility and Recovery Through In-Situ Combustion With the Addition of Ammonia
,” U.S. Patent No. 9,574,429.
25.
Blunt
,
M.
,
John Fayers
,
F.
, and
Orr
,
F. M.
, Jr.
,
1993
, “
Carbon Dioxide in Enhanced Oil Recovery
,”
Energy Convers. Manage.
,
34
(
9–11
), pp.
9
11
. 10.1016/0196-8904(93)90069-M
26.
Bondor
,
P. L.
,
1992
, “
Applications of Carbon Dioxide in Enhanced Oil Recovery
,”
Energy Convers. Manage.
,
33
(
5–8
), pp.
579
586
. 10.1016/0196-8904(92)90059-6
27.
Gelowitz
,
D.
,
Kritpiphat
,
W.
, and
Tontiwachwuthikul
,
P.
,
1995
, “
Cogeneration Concepts for CO2 Separation From Power Plants for Enhanced Oil Recovery Applications
,”
Energy Convers. Manage.
,
36
(
6–9
), pp.
563
566
. 10.1016/0196-8904(95)00068-O
28.
Jessen
,
K.
,
Kovscek
,
A. R.
, and
Orr
,
F. M.
, Jr.
,
2005
, “
Increasing CO2 Storage in Oil Recovery
,”
Energy Convers. Manage.
,
46
(
2
), pp.
293
311
. 10.1016/j.enconman.2004.02.019
29.
Wang
,
X.
,
Alvarado
,
V.
,
Swoboda-Colberg
,
N.
, and
Kaszuba
,
J. P.
,
2013
, “
Reactivity of Dolomite in Water-Saturated Supercritical Carbon Dioxide: Significance for Carbon Capture and Storage and for Enhanced Oil and Gas Recovery
,”
Energy Convers. Manage.
,
65
, pp.
564
573
. 10.1016/j.enconman.2012.07.024
30.
ZareNezhad
,
B.
, and
Hosseinpour
,
N.
,
2009
, “
An Extractive Distillation Technique for Producing CO2 Enriched Injection Gas in Enhanced Oil Recovery (EOR) Fields
,”
Energy Convers. Manage.
,
50
(
6
), pp.
1491
1496
. 10.1016/j.enconman.2009.02.016
31.
Van
,
S. L.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3)
, p.
032906
. 10.1115/1.4038054
32.
Paurola
,
P.
,
Vindspoll
,
H.
,
Grande
,
K. V.
, and
Hofstad
,
K. H.
,
2016
, “
In Situ Combustion Process With Reduced CO2 Emissions
,” U.S. Patent No. 9,470,077.
33.
Canas
,
C.
,
Gittins
,
S.
,
Gupta
,
S.
,
Sood
,
A.
, and
Wu
,
X.
,
2016
, “
Hydrocarbon Recovery Facilitated by In Situ Combustion
,” U.S. Patent No. 9,284,827.
34.
Coates
,
R.
,
Lorimer
,
S.
, and
Ivory
,
J.
,
1995
, “
Experimental and Numerical Simulations of a Novel top Down In-Situ Combustion Process
,”
SPE International Heavy Oil Symposium, Society of Petroleum Engineers
,
Calgary, Alberta, Canada
,
June 19–21
, pp.
487
498
.
35.
Hayashitani
,
M.
,
Bennion
,
D. W.
,
Donnelly
,
J. K.
, and
Moore
,
R. G.
,
1978
, “
Thermal Cracking Models for Athabasca Oil Sands Oil
,”
SPE Annual Fall Technical Conference and Exhibition
,
Houston, TX
,
Oct. 1–3
, pp.
233
247
.
36.
Babushok
,
V. I.
, and
Dakdancha
,
A. N.
,
1993
, “
Global Kinetic Parameters for High-Temperature Gas-Phase Reactions
,”
Combustion, Explosion Shock Waves
,
29
(
4
), pp.
464
489
. 10.1007/BF00782974
37.
Hajdo
,
L. E.
,
Hallam
,
R. J.
, and
Vorndran
,
L. D. L.
,
1985
, “
Hydrogen Generation During In-Situ Combustion
,”
SPE California Regional Meeting, Society of Petroleum Engineers
,
Bakersfield, CA
,
Mar. 27–29
, pp.
1
15
, SPE 13661.
38.
Guntermann
,
K.
,
Gudenau
,
H.
, and
Mohtadi
,
M.
,
1982
, “
Mathematical Modeling of the In Situ Coal Gasification Process
,”
Proceedings of the Eighth Underground Coal Conversion Symposium
,
Sandia National Laboratories, US
,
Aug. 15–19
, pp.
297
306
.
39.
Kapadia
,
P. R.
,
Kallos
,
M. S.
, and
Gates
,
I. D.
,
2011
, “
Potential for Hydrogen Generation From in Situ Combustion of Athabasca Bitumen
,”
Fuel
,
90
(
6
), pp.
2254
2265
. 10.1016/j.fuel.2011.02.038
40.
Kapadia
,
P. R.
,
Kallos
,
M. S.
, and
Gates
,
I. D.
,
2013
, “
A New Kinetic Model for Pyrolysis of Athabasca Bitumen
,”
Can. J. Chem. Eng.
,
91
(
5
), pp.
889
901
. 10.1002/cjce.21732
41.
Yang
,
X.
, and
Gates
,
I. D.
,
2009
, “
Design of Hybrid Steam—In Situ Combustion Bitumen Recovery Processes
,”
Nat. Resour. Res.
,
18
(
3
), pp.
213
233
. 10.1007/s11053-009-9099-8
42.
Belgrave
,
J.
,
Moore
,
R.
,
Ursenbach
,
M.
, and
Bennion
,
D.
,
1993
, “
A Comprehensive Approach to In-Situ Combustion Modeling
,”
SPE Adv. Technol. Series
,
1
(
1
), pp.
98
107
. 10.2118/20250-PA
43.
Kapadia
,
P. R.
,
Wang
,
J. J.
,
Kallos
,
M. S.
, and
Gates
,
I. D.
,
2013
, “
Practical Process Design for In Situ Gasification of Bitumen
,”
Appl. Energy
,
107
, pp.
281
296
. 10.1016/j.apenergy.2013.02.035
44.
Yang
,
X.
, and
Gates
,
I. D.
,
2009
, “
Combustion Kinetics of Athabasca Bitumen From 1D Combustion Tube Experiments
,”
Nat. Resources Res.
,
18
(
3
), pp.
193
211
. 10.1007/s11053-009-9095-z
45.
Cmg
,
S.
,
2017
,
Advanced Processes & Thermal Reservoir Simulator, User's Guide.
Computer Modelling Group Ltd
,
Calgary, Canada
.
46.
Benham
,
A.
, and
Poettman
,
F. H.
,
1958
, “
The Thermal Recovery Process—An Analysis of Laboratory Combustion Data
,”
J. Pet. Technol.
,
10
(
9
), pp.
83
85
. 10.2118/1022-G
47.
Fassihi
,
M. R.
,
Brigham
,
W. E.
, and
Ramey
,
H. J.
, Jr.
,
1984
, “
Reaction Kinetics of In-Situ Combustion: Part 1—Observations
,”
Soc. Pet. Eng. J.
,
24
(
4
), pp.
399
407
. 10.2118/8907-PA
48.
Fassihi
,
M. R.
,
Brigham
,
W. E.
, and
Ramey
,
H. J.
, Jr.
,
1984
, “
Reaction Kinetics of In-Situ Combustion: Part 2—Modeling
,”
Soc. Pet. Eng. J.
,
24
(
4
), pp.
408
416
. 10.2118/9454-PA
49.
Aziz
,
K.
, and
Settari
,
A.
,
1979
,
Petroleum Reservoir Simulation
,
Applied Science Publishers
,
London
.
50.
Rabiu Ado
,
M.
,
2017
,
Numerical Simulation of Heavy Oil and Bitumen Recovery and Upgrading Techniques
,
University of Nottingham
,
Nottingham, UK
.
51.
Vinsome
,
P. K. W.
, and
Westerveld
,
J.
,
1980
, “
A Simple Method for Predicting Cap and Base Rock Heat Losses In'thermal Reservoir Simulators
,”
J. Can. Pet. Technol.
,
19
(
3
), pp.
87
90
. 10.2118/80-03-04
52.
Yang
,
X.
,
2008
, “
Hybrid Steam Air Heavy Oil Recovery Process Design
,” M.S. thesis,
University of Calgary
,
Calgary, Canada
.
53.
Kapadia
,
P. R.
,
2012
, “
Gasification of Athabasca Bitumen: Hydrogen Generation, Kinetics, and In Situ Process Design
.”, Unpublished doctoral thesis, University of Calgary, Calgary, AB.
You do not currently have access to this content.