Abstract

In this study, experiments were performed in a single-cylinder research engine to investigate the particulate matter (PM) characteristics of the engine operated in premixed charge compression ignition (PCCI) mode combustion vis-a-vis baseline compression ignition (CI) mode combustion using three test fuels, namely, B20 (20% v/v biodiesel blended with mineral diesel), B40 (40% v/v/ biodiesel blended with mineral diesel), and baseline mineral diesel. The experiments were carried out at constant fuel injection pressure (FIP) (700 bar), constant engine speed (1500 rpm), and constant fuel energy input (0.7 kg/h diesel equivalent). PM characteristics of PCCI mode combustion were evaluated using two different fuel injection strategies, namely, single pilot injection (SPI) (35 deg before top dead center (bTDC)) and double pilot injection (DPI) (35 deg and 45 deg bTDC) at four different start of main injection (SoMI) timings. Results showed that both PCCI mode combustion strategies emitted significantly lower PM compared to baseline CI mode combustion strategy. However, the blending of biodiesel resulted in relatively higher PM emissions from both CI and PCCI combustion modes. Chemical characterization of PM showed that PCCI mode combustion emitted relatively lower trace metals compared to baseline CI mode combustion, which reduced further for B20. For detailed investigations of particulate structure, morphological characterization was done using transmission electron microscopy (TEM), which showed that PM emitted by B20-fueled PCCI mode combustion posed potentially lower health risk compared to baseline mineral diesel-fueled CI mode combustion.

References

References
1.
Johnson
,
T. V.
,
2009
, “
Review of Diesel Emissions and Control
,”
Int. J. Engine Res.
,
10
(
5
), pp.
275
285
. 10.1243/14680874JER04009
2.
Shukla
,
P. C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2018
, “
Performance Evaluation of a Biodiesel Fuelled Transportation Engine Retrofitted With a Non-Noble Metal Catalysed Diesel Oxidation Catalyst for Controlling Unregulated Emissions
,”
J. Hazard. Mater.
,
344
, pp.
615
625
. 10.1016/j.jhazmat.2017.10.052
3.
Hwang
,
J. T.
,
Nord
,
A. J.
, and
Northrop
,
W. F.
,
2017
, “
Efficacy of Add-On Hydrous Ethanol Dual Fuel Systems to Reduce NOx Emissions From Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042206
. 10.1115/1.4036252
4.
Resitoglu
,
I. A.
,
Altinisik
,
K.
,
Keskin
,
A.
,
Yildirimcan
,
S.
,
Ocakoglu
,
K.
, and
Omar
,
M. A.
,
2017
, “
Development of Fe2O3 Based Catalysts to Control Pollutant Emissions in Diesel Engines
,”
Fuel
,
208
, pp.
111
116
. 10.1016/j.fuel.2017.07.023
5.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol-Dodecanol-Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
. 10.1115/1.4043390
6.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102201
. 10.1115/1.4039745
7.
Yadav
,
J.
, and
Ramesh
,
A.
,
2018
, “
Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072206
. 10.1115/1.4039546
8.
Hanson
,
R.
,
Salvi
,
A.
,
Redon
,
F.
, and
Regner
,
G.
,
2019
, “
Experimental Comparison of Gasoline Compression Ignition and Diesel Combustion in a Medium-Duty Opposed-Piston Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122201
. 10.1115/1.4044655
9.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Experimental Evaluation of Sensitivity of Low-Temperature Combustion to Intake Charge Temperature and Fuel Properties
,”
Int. J. Engine Res.
,
19
(
7
), pp.
732
757
. 10.1177/1468087417730215
10.
Fang
,
W.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2017
, “
Dilution Sensitivity of Particulate Matter Emissions From Reactivity-Controlled Compression Ignition Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032204
. 10.1115/ICEF2015-1092
11.
Hou
,
J.
,
Liu
,
J.
,
Wei
,
Y.
, and
Jiang
,
Z.
,
2016
, “
Experimental Study on In-Cylinder Pressure Oscillations of Homogenous Charge Compression Ignition-Direct Injection Combustion Engine Fueled With Dimethyl Ether
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052211
. 10.1115/1.4033588
12.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Partially Homogenous Charge Compression Ignition Engine Development for Low Volatility Fuels
,”
Energy Fuels
,
31
(
3
), pp.
3164
3181
. 10.1021/acs.energyfuels.6b02832
13.
Murugesa
,
P. M.
, and
Anand
,
K.
,
2018
, “
Comparison of Different Low Temperature Combustion Strategies in a Light Duty Air Cooled Diesel Engine
,”
Appl. Therm. Eng.
,
142
, pp.
380
390
. 10.1016/j.applthermaleng.2018.07.047
14.
Srihari
,
S.
, and
Thirumalini
,
S.
,
2017
, “
Investigation on Reduction of Emission in PCCI-DI Engine With Biofuel Blends
,”
Renewable Energy
,
114
, pp.
1232
1237
. 10.1016/j.renene.2017.08.008
15.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Maurya
,
R. K.
,
2017
, “
Evolution, Challenges and Path Forward for Low Temperature Combustion Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
1
56
. 10.1016/j.pecs.2017.02.001
16.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Fuel Injection Parameters on Combustion Stability and Emissions of a Mineral Diesel Fueled Partially Premixed Charge Compression Ignition (PCCI) Engine
,”
Appl. Energy
,
190
, pp.
658
669
. 10.1016/j.apenergy.2016.12.164
17.
Lee
,
J.
,
Chu
,
S.
,
Cha
,
J.
,
Choi
,
H.
, and
Min
,
K.
,
2015
, “
Effect of the Diesel Injection Strategy on the Combustion and Emissions of Propane/Diesel Dual Fuel Premixed Charge Compression Ignition Engines
,”
Energy
,
93
(
1
), pp.
1041
1052
. 10.1016/j.energy.2015.09.032
18.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Split Fuel Injection and EGR on NOx and PM Emission Reduction in a Low Temperature Combustion (LTC) Mode Diesel Engine
,”
Energy
,
122
, pp.
249
264
. 10.1016/j.energy.2017.01.050
19.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082303
. 10.1115/1.4045923
20.
Wang
,
Z.
,
Liu
,
H.
,
Ma
,
X.
,
Wang
,
J.
,
Shuai
,
S.
, and
Reitz
,
R.
,
2016
, “
Homogeneous Charge Compression Ignition (HCCI) Combustion of Polyoxymethylene Dimethyl Ethers (PODE)
,”
Fuel
,
183
, pp.
206
213
. 10.1016/j.fuel.2016.03.019
21.
Tong
,
L.
,
Wang
,
H.
,
Zheng
,
Z.
,
Reitz
,
R.
, and
Yao
,
M.
,
2016
, “
Experimental Study of RCCI Combustion and Load Extension in a Compression Ignition Engine Fueled With Gasoline and PODE
,”
Fuel
,
181
, pp.
878
886
. 10.1016/j.fuel.2016.05.037
22.
Li
,
B.
,
Li
,
Y.
,
Liu
,
H.
,
Liu
,
F.
,
Wang
,
Z.
, and
Wang
,
J.
,
2017
, “
Combustion and Emission Characteristics of Diesel Engine Fueled With Biodiesel/PODE Blends
,”
Appl. Energy
,
206
, pp.
425
431
. 10.1016/j.apenergy.2017.08.206
23.
Lee
,
Y.
,
Jang
,
K.
,
Han
,
K.
,
Huh
,
K. Y.
, and
Oh
,
S.
, “
Simulation of a Heavy Duty Diesel Engine Fueled With Soybean Biodiesel Blends in Low Temperature Combustion
,” SAE Technical Paper 2013, Report No. 2013-01-1100.
24.
Chen
,
H.
,
Huang
,
R.
,
Huang
,
H.
,
Pan
,
M.
, and
Teng
,
W.
,
2019
, “
Potential Improvement in Particulate Matter’s Emissions Reduction From Diesel Engine by Addition of PODE and Injection Parameters
,”
Appl. Therm. Eng.
,
150
, pp.
591
604
. 10.1016/j.applthermaleng.2019.01.026
25.
McCrady
,
J. P.
,
Stringer
,
V. L.
,
Hansen
,
A. C.
,
Lee
,
C. F.
, “
Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine Using Well Defined Fuel Properties
,” SAE Technical Paper 2007, Report No. 2007-01-0617.
26.
Zehni
,
A.
, and
Saray
,
R. K.
,
2018
, “
Comparison of Late PCCI Combustion, Performance and Emissions of Diesel Engine for B20 and B100 Fuels by KIVA-CHEMKIN Coupling
,”
Renewable Energy
,
122
, pp.
118
130
. 10.1016/j.renene.2018.01.046
27.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Lukose
,
J.
, and
Gupta
,
T.
,
2013
, “
Characterization of Exhaust Particulates From Diesel Fueled Homogenous Charge Compression Ignition Combustion Engine
,”
J. Aerosol Sci.
,
58
, pp.
71
85
. 10.1016/j.jaerosci.2012.12.005
28.
Cheung
,
K. L.
,
Ntziachristos
,
L.
,
Tzamkiozis
,
T.
,
Schauer
,
J. J.
,
Samaras
,
Z.
,
Moore
,
K. F.
, and
Sioutas
,
C.
,
2010
, “
Emissions of Particulate Trace Elements, Metals and Organic Species From Gasoline, Diesel, and Biodiesel Passenger Vehicles and Their Relation to Oxidative Potential
,”
Aerosol Sci. Technol.
,
44
(
7
), pp.
500
513
. 10.1080/02786821003758294
29.
Sun
,
C.
,
Kang
,
D.
,
Bohac
,
S. V.
, and
Boehman
,
A. I.
,
2016
, “
Impact of Fuel and Injection Timing on Partially Premixed Charge Compression Ignition Combustion
,”
Energy Fuels
,
30
(
5
), pp.
4331
4345
. 10.1021/acs.energyfuels.6b00257
30.
Jung
,
Y.
,
Hwang
,
J.
, and
Bae
,
C.
,
2016
, “
Assessment of Particulate Matter in Exhaust Gas for Biodiesel and Diesel Under Conventional and Low Temperature Combustion in a Compression Ignition Engine
,”
Fuel
,
165
, pp.
413
424
. 10.1016/j.fuel.2015.10.076
31.
Rohani
,
B.
,
Park
,
S. S.
, and
Bae
,
C. S.
,
2016
, “
Effect of Injection Strategy on Smoothness, Emissions and Soot Characteristics of PCCI-Conventional Diesel Mode Transition
,”
Appl. Therm. Eng.
,
93
, pp.
1033
1042
. 10.1016/j.applthermaleng.2015.09.075
32.
Lapuerta
,
M.
,
Rodríguez-Fernández
,
J.
,
Sánchez-Valdepeñas
,
J.
, and
Salgado
,
M. S.
,
2016
, “
Multi-technique Analysis of Soot Reactivity From Conventional and Paraffinic Diesel Fuels
,”
Flow Turbulence Combust.
,
96
(
2
), pp.
327
341
. 10.1007/s10494-015-9644-y
33.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
10
), p.
052212
. 10.1115/1.4033536
34.
Singh
,
A. P.
,
Jain
,
A.
, and
Agarwal
,
A. K.
,
2017
, “
Fuel-Injection Strategy for PCCI Engine Fueled by Mineral Diesel and Biodiesel Blends
,”
Energy Fuels
,
31
(
8
), pp.
8594
8607
. 10.1021/acs.energyfuels.6b03393
35.
Rajput
,
P.
, and
Gupta
,
T.
,
2016
, “
A Facile Digestion Protocol for Metal Analysis in Ambient Aerosols: Implications to Mineral Dust Characteristics and Human Health Impact
,”
J. Energy Environ. Sustain.
,
2
, pp.
24
29
.
36.
Agarwal
,
A. K.
,
Ateeq
,
B.
,
Gupta
,
T.
,
Singh
,
A. P.
,
Pandey
,
S. K.
,
Sharma
,
N.
,
Agarwal
,
R. A.
,
Gupta
,
N. K.
,
Sharma
,
H.
,
Jain
,
A.
, and
Shukla
,
P. C.
,
2018
, “
Toxicity and Mutagenicity of Exhaust From Compressed Natural Gas: Could This Be a Clean Solution for Megacities With Mixed-Traffic Conditions?
,”
Environ. Pollut.
,
239
, pp.
499
511
. 10.1016/j.envpol.2018.04.028
37.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Gupta
,
T.
,
Agarwal
,
R. A.
,
Sharma
,
N.
,
Rajput
,
P.
,
Pandey
,
S. K.
, and
Ateeq
,
B.
,
2018
, “
Mutagenicity and Cytotoxicity of Particulate Matter Emitted From Biodiesel-Fueled Engines
,”
Environ. Sci. Technol.
,
52
(
24
), pp.
14496
14507
. 10.1021/acs.est.8b03345
38.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
. 10.1115/1.4046225
39.
Engine Exhaust Particle Sizer Spectrometer Model 3090. Operation and Service Manual, TSI, USA; March 2009.
40.
Shukla
,
P. C.
,
Gupta
,
T.
,
Gupta
,
N.
, and
Agarwal
,
A. K.
,
2017
, “
A Qualitative Correlation Between Engine Exhaust Particulate Number and Mass Emissions
,”
Fuel
,
202
, pp.
241
245
. 10.1016/j.fuel.2017.04.016
41.
Sunderman
,
F. W.
, Jr.
,
1978
, “
Carcinogenic Effects of Metals
,”
Fed. Proc.
,
37
(
1
), p.
40
.
42.
Duvvuri
,
P. P.
,
Sukumaran
,
S.
,
Shrivastava
,
R. K.
, and
Sreedhara
,
S.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032201
. 10.1115/1.4044563
43.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Modeling the Effect of Parametric Variations on Soot Particle Size Distribution in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
. 10.1115/ICEF2018-9699
44.
Gupta
,
J. G.
,
Agarwal
,
A. K.
, and
Aggrawal
,
S. K.
,
2015
, “
Particulate Emissions From Karanja Biodiesel Fueled Turbocharged CRDI Sports Utility Vehicle Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
064503
. 10.1115/1.4031006
You do not currently have access to this content.