Abstract

The direct-fired supercritical carbon dioxide cycles are one of the most promising power generation methods in terms of their efficiency and environmental friendliness. Two important challenges in implementing these cycles are the high pressure (300 bar) and high CO2 dilution (>80%) in the combustor. The design and development of supercritical oxy-combustors for natural gas require accurate reaction kinetic models to predict the combustion outcomes. The presence of a small amount of impurities in natural gas and other feed streams to oxy-combustors makes these predictions even more complex. During oxy-combustion, trace amounts of nitrogen present in the oxidizer is converted to NOx and gets into the combustion chamber along with the recirculated CO2. Similarly, natural gas can contain a trace amount of ammonia and sulfurous impurities that get converted to NOx and SOx and get back into the combustion chamber with recirculated CO2. In this work, a reaction model is developed for predicting the effect of impurities such as NOx and SOx on supercritical methane combustion. The base mechanism used in this work is GRI Mech 3.0. H2S combustion chemistry is obtained from Bongartz et al. while NOx chemistry is from Konnov. The reaction model is then optimized for a pressure range of 30–300 bar using high-pressure shock tube data from the literature. It is then validated with data obtained from the literature for methane combustion, H2S oxidation, and NOx effects on ignition delay. The effect of impurities on CH4 combustion up to 16 atm is validated using NOx-doped methane studies obtained from the literature. In order to validate the model for high-pressure conditions, experiments are conducted at the UCF shock tube facility using natural gas identical mixtures with N2O as an impurity at ∼100 bar. Current results show that there is a significant change in ignition delay with the presence of impurities. A comparison is made with experimental data using the developed model and predictions are found to be in good agreement. The model developed was used to study the effect of impurities on CO formation from sCO2 combustors. It was found that NOx helps in reducing CO formation while the presence of H2S results in the formation of more CO. The reaction mechanism developed herein can also be used as a base mechanism to develop reduced mechanisms for use in CFD simulations.

References

References
1.
Allam
,
R.
,
Fetvedt
,
J.
,
Forrest
,
B.
, and
Freed
,
D.
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers
, p.
V03BT36A016
.
2.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2018
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
. 10.1115/1.4040581
3.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm[Q7] Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
.
4.
Black
,
J.
,
Straub
,
D.
,
Robey
,
E.
,
Yip
,
J.
,
Ramesh
,
S.
,
Roy
,
A.
, and
Searle
,
M.
,
2020
, “
Measurement of Convective Heat Transfer Coefficients With Supercritical CO2 Using the Wilson-Plot Technique
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070901
. 10.1115/1.4046700
5.
Deshmukh
,
A.
, and
Kapat
,
J.
,
2020
, “
Pinch Point Analysis of Air Cooler in Supercritical Carbon Dioxide Brayton Cycle Operating Over Ambient Temperature Range
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050509
.
6.
Fang
,
L.
,
Li
,
Y.
,
Yang
,
X.
, and
Yang
,
Z.
,
2019
, “
Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031301
.
7.
Bai
,
Z.
,
Zhang
,
G.
,
Yang
,
Y.
, and
Wang
,
Z.
,
2019
, “
Design Performance Simulation of a Supercritical CO2 Cycle Coupling With a Steam Cycle for gas Turbine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102001
. 10.1115/1.4043391
8.
Pryor
,
O. M.
,
Vasu
,
S.
,
Lu
,
X.
,
Freed
,
D.
, and
Forrest
,
B.
,
2018
, “
Development of a Global Mechanism for Oxy-Methane Combustion in a CO2 Environment
,” (51180), p.
V009T038A004
.
9.
Pryor
,
O. M.
,
Barak
,
S.
,
Koroglu
,
B.
,
Ninnemann
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Measurements and Interpretation of Shock Tube Ignition Delay Times in Highly CO2 Diluted Mixtures Using Multiple Diagnostics
,”
Combust. Flame
,
180
, pp.
63
76
. 10.1016/j.combustflame.2017.02.020
10.
Pryor
,
O.
,
Koroglu
,
B.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
Ignition Delay Times of High Pressure Oxy-Methane Combustion With High Levels of CO2 Dilution
,” (50848), p.
V04AT04A044
.
11.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
. 10.1115/1.4036254
12.
Vasu
,
S. S.
,
Pryor
,
O. M.
,
Kapat
,
J. S.
,
Masunov
,
A.
, and
Martin
,
S. M.
,
2016
, “
Developing a Validated Chemical Kinetics Model for sCO2 Combustion and Implementation in CFD
,”
Proceedings of the Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
, Paper#7.
13.
Wang
,
C.-H.
,
Panteleev
,
S. V.
,
Masunov
,
A. E.
,
Allison
,
T. C.
,
Chang
,
S.
,
Lim
,
C.
,
Jin
,
Y.
, and
Vasu
,
S. S.
,
2019
, “
Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3
,”
J. Phys. Chem. A
,
123
(
22
), pp.
4776
4784
. 10.1021/acs.jpca.9b02302
14.
Manikantachari
,
K. R. V.
,
Martin
,
S.
,
Rahman
,
R. K.
,
Velez
,
C.
, and
Vasu
,
S.
,
2019
, “
A General Study of Counterflow Diffusion Flames for Supercritical CO2 Combustion
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121020
. 10.1115/1.4045195
15.
Barak
,
S.
,
Pryor
,
O.
,
Ninnemann
,
E.
,
Neupane
,
S.
,
Vasu
,
S.
,
Lu
,
X.
, and
Forrest
,
B.
,
2020
, “
Ignition Delay Times of Oxy-Syngas and Oxy-Methane in Supercritical CO2 Mixtures for Direct-Fired Cycles
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021014
. 10.1115/1.4045743
16.
Manikantachari
,
K. R. V.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2017
, “
Thermal and Transport Properties for the Simulation of Direct-Fired sCO2 Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121505
. 10.1115/1.4037579
17.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
, and
Meeks
,
E.
,
2019
, “
A Comprehensive Kinetics Library for Simulating the Combustion of Automotive Fuels
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092201
.
18.
Manikantachari
,
K. R. V.
,
Vesely
,
L.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
. 10.1115/1.4039746
19.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082205
. 10.1115/1.4042411
20.
Wang
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
,
Metghalchi
,
H.
, and
Levendis
,
Y. A.
,
2019
, “
Effects of Carbon Dioxide on Laminar Burning Speed and Flame Instability of Methane/Air and Propane/Air Mixtures: A Literature Review
,”
Energy Fuels
,
33
(
10
), pp.
9403
9418
. 10.1021/acs.energyfuels.9b02346
21.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2011
, “
Shock Tube Study of Syngas Ignition in Rich CO2 Mixtures and Determination of the Rate of H+ O2+ CO2→ HO2+ CO2
,”
Energy Fuels
,
25
(
3
), pp.
990
997
. 10.1021/ef1015928
22.
Koroglu
,
B.
,
Neupane
,
S.
,
Pryor
,
O.
,
Peale
,
R. E.
, and
Vasu
,
S. S.
,
2018
, “
High Temperature Infrared Absorption Cross Sections of Methane Near 3.4 µm in Ar and CO2 Mixtures
,”
J. Quantitative Spectrosc. Radiative Transfer
,
206
(
Suppl C
), pp.
36
45
. 10.1016/j.jqsrt.2017.11.003
23.
Koroglu
,
B.
,
Pryor
,
O.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2016
, “
Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion
,”
Combust. Flame
,
164
, pp.
152
163
. 10.1016/j.combustflame.2015.11.011
24.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
. 10.1016/j.apenergy.2016.06.118
25.
Shao
,
J.
,
Choudhary
,
R.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Barak
,
S.
, and
Vasu
,
S.
,
2019
, “
Ignition Delay Times of Methane and Hydrogen Highly Diluted in Carbon Dioxide at High Pressures up to 300 atm
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4555
4562
. 10.1016/j.proci.2018.08.002
26.
Barak
,
S.
,
Pryor
,
O.
,
Ninnemann
,
E.
,
Neupane
,
S.
,
Lu
,
X.
,
Forrest
,
B.
, and
Vasu
,
S.
, “
Ignition Delay Times of Syngas and Methane in sCO2 Diluted Mixtures for Direct-Fired Cycles
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
, p.
V009T38A001
.
27.
Li
,
Y.
,
Zhou
,
C.-W.
,
Somers
,
K. P.
,
Zhang
,
K.
, and
Curran
,
H. J.
,
2017
, “
The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison With Isobutene and 1-Butene
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
403
411
. 10.1016/j.proci.2016.05.052
28.
Wait
,
E. E.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2019
, “
Quantum Chemical and Master Equation Study of OH + CH2O → H2O + CHO Reaction Rates in Supercritical CO2 Environment
,”
Int. J. Chem. Kinet.
,
51
(
1
), pp.
42
48
. 10.1002/kin.21228
29.
Panteleev
,
S. V.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2019
, “
Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 4: Boxed MD Study of Formyl Radical Dissociation and Recombination
,”
J. Mol. Mod.
,
25
(
2
), p.
35
. 10.1007/s00894-018-3912-4
30.
Masunov
,
A. E.
,
Wait
,
E. E.
, and
Vasu
,
S. S.
,
2018
, “
Catalytic Effect of Carbon Dioxide on Reaction OH + CO → H + CO2 in Supercritical Environment: Master Equation Study
,”
J. Phys. Chem. A
,
122
(
31
), pp.
6355
6359
. 10.1021/acs.jpca.8b04501
31.
Masunov
,
A. E.
,
Wait
,
E. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2017
, “
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics
,”
J. Phys. Chem. A
,
121
(
19
), pp.
3728
3735
. 10.1021/acs.jpca.7b02638
32.
Masunov
,
A. E.
,
Wait
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Quantum Chemical Study of CH3 + O2 Combustion Reaction System: Catalytic Effects of Additional CO2 Molecule
,”
J. Phys. Chem. A
,
121
(
30
), pp.
5681
5689
. 10.1021/acs.jpca.7b04897
33.
Masunov
,
A. E.
,
Wait
,
E.
, and
Vasu
,
S. S.
,
2016
, “
Chemical Reaction CO + OH• → CO2+H• Autocatalyzed by Carbon Dioxide: Quantum Chemical Study of the Potential Energy Surfaces
,”
J. Phys. Chem. A
,
120
(
30
), pp.
6023
6028
. 10.1021/acs.jpca.6b03242
34.
Masunov
,
A. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2016
, “
Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment. Part 1: Carbon Dioxide and Water Force Field Parameters Refitting and Critical Isotherms of Binary Mixtures
,”
Energy Fuels
,
30
(
11
), pp.
9622
9627
. 10.1021/acs.energyfuels.6b01927
35.
Masunov
,
A. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2016
, “
Potential Energy Surfaces for the Reactions of HO2 Radical With CH2O and HO2 in CO2 Environment
,”
J. Phys. Chem. A
,
120
(
39
), pp.
7681
7688
. 10.1021/acs.jpca.6b07257
36.
Wang
,
C.-H.
,
Masunov
,
A. E.
,
Allison
,
T. C.
,
Chang
,
S.
,
Lim
,
C.
,
Jin
,
Y.
, and
Vasu
,
S. S.
,
2019
, “
Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. 6. Computational Kinetics of Reactions Between Hydrogen Atom and Oxygen Molecule H + O2 ⇌ HO + O and H + O2 ⇌ HO2
,”
J. Phys. Chem. A
,
123
(
50
), pp.
10772
10781
. 10.1021/acs.jpca.9b08789
37.
Panteleev
,
S. V.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2018
, “
Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment. Part 2: Boxed MD Study of CO + OH → CO2 + H Reaction Kinetics
,”
J. Phys. Chem. A
,
122
(
4
), pp.
897
908
. 10.1021/acs.jpca.7b09774
38.
Smith
,
G. P.
,
Michael Frenklach
,
D. M. G.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Thomas Bowman
,
C.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, http://combustion.berkeley.edu/gri_mech/.
39.
Bongartz
,
D.
, and
Ghoniem
,
A. F.
,
2015
, “
Chemical Kinetics Mechanism for Oxy-Fuel Combustion of Mixtures of Hydrogen Sulfide and Methane
,”
Combust. Flame
,
162
(
3
), pp.
544
553
. 10.1016/j.combustflame.2014.08.019
40.
Deng
,
F.
,
Yang
,
F.
,
Zhang
,
P.
,
Pan
,
Y.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2016
, “
Ignition Delay Time and Chemical Kinetic Study of Methane and Nitrous Oxide Mixtures at High Temperatures
,”
Energy Fuels
,
30
(
2
), pp.
1415
1427
.
41.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
. 10.1016/j.combustflame.2009.03.016
42.
2019
, “ANSYS Chemkin-Pro,” http://www.ansys.com/products/fluids/ansys-chemkin-pro,
San Diego, CA
.
43.
Zhou
,
C.-W.
,
Li
,
Y.
,
Burke
,
U.
,
Banyon
,
C.
,
Somers
,
K. P.
,
Ding
,
S.
,
Khan
,
S.
,
Hargis
,
J. W.
,
Sikes
,
T.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
AlAbbad
,
M.
,
Farooq
,
A.
,
Pan
,
Y.
,
Zhang
,
Y.
,
Huang
,
Z.
,
Lopez
,
J.
,
Loparo
,
Z.
,
Vasu
,
S. S.
, and
Curran
,
H. J.
,
2018
, “
An Experimental and Chemical Kinetic Modeling Study of 1,3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements
,”
Combust. Flame
,
197
, pp.
423
438
. 10.1016/j.combustflame.2018.08.006
44.
Barak
,
S.
,
Ninnemann
,
E.
,
Neupane
,
S.
,
Barnes
,
F.
,
Kapat
,
J.
, and
Vasu
,
S.
,
2018
, “
High-Pressure Oxy-Syngas Ignition Delay Times With CO2 Dilution: Shock Tube Measurements and Comparison of the Performance of Kinetic Mechanisms
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), pp.
021011
021017
.
45.
Loparo
,
Z. E.
,
Lopez
,
J. G.
,
Neupane
,
S.
,
Partridge
,
W. P.
,
Vodopyanov
,
K.
, and
Vasu
,
S. S.
,
2017
, “
Fuel-Rich n-Heptane Oxidation: A Shock Tube and Laser Absorption Study
,”
Combust. Flame
,
185
(
Supplement C
), pp.
220
233
. 10.1016/j.combustflame.2017.07.016
46.
Barak
,
S.
,
Pryor
,
O.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Vasu
,
S.
, and
Koroglu
,
B.
,
2017
, “
High-Speed Imaging and Measurements of Ignition Delay Times in Oxy-Syngas Mixtures With High CO2 Dilution in a Shock Tube
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121503
. 10.1115/1.4037458
47.
Loparo
,
Z. E.
,
Muraviev
,
A. V.
,
Figueiredo
,
P.
,
Lyakh
,
A.
,
Peale
,
R. E.
,
Ahmed
,
K.
, and
Vasu
,
S. S.
,
2018
, “
Shock Tube Demonstration of Acousto-Optically Modulated Quantum Cascade Laser as a Broadband, Time-Resolved Combustion Diagnostic
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112202
. 10.1115/1.4040381
48.
Koroglu
,
B.
, and
Vasu
,
S. S.
,
2016
, “
Measurements of Propanal Ignition Delay Times and Species Time Histories Using Shock Tube and Laser Absorption
,”
Int. J. Chem. Kinet.
,
48
(
11
), pp.
679
690
. 10.1002/kin.21024
49.
Barari
,
G.
,
Pryor
,
O.
,
Koroglu
,
B.
,
Sarathy
,
S. M.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2017
, “
High Temperature Shock Tube Experiments and Kinetic Modeling Study of Diisopropyl Ketone Ignition and Pyrolysis
,”
Combust. Flame
,
177
, pp.
207
218
. 10.1016/j.combustflame.2016.12.003
50.
Loparo
,
Z. E.
,
Ninnemann
,
E.
,
Thurmond
,
K.
,
Laich
,
A.
,
Azim
,
A.
,
Lyakh
,
A.
, and
Vasu
,
S. S.
,
2019
, “
Acousto-Optically Modulated Quantum Cascade Laser for High-Temperature Reacting Systems Thermometry
,”
Opt. Lett.
,
44
(
6
), pp.
1435
1438
. 10.1364/OL.44.001435
51.
Ninnemann
,
E.
,
Kim
,
G.
,
Laich
,
A.
,
Almansour
,
B.
,
Terracciano
,
A. C.
,
Park
,
S.
,
Thurmond
,
K.
,
Neupane
,
S.
,
Wagnon
,
S.
,
Pitz
,
W. J.
, and
Vasu
,
S. S.
,
2019
, “
Co-optima Fuels Combustion: A Comprehensive Experimental Investigation of Prenol Isomers
,”
Fuel
,
254
, p.
115630
. 10.1016/j.fuel.2019.115630
52.
Barak
,
S.
,
Rahman
,
R. K.
,
Neupane
,
S.
,
Ninnemann
,
E.
,
Arafin
,
F.
,
Laich
,
A.
,
Terracciano
,
A. C.
, and
Vasu
,
S. S.
,
2020
, “
Measuring the Effectiveness of High-Performance Co-Optima Biofuels on Suppressing Soot Formation at High Temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
7
), pp.
3451
3460
. 10.1073/pnas.1920223117
53.
Loparo
,
Z. E.
,
Ninnemann
,
E.
,
Ru
,
Q.
,
Vodopyanov
,
K. L.
, and
Vasu
,
S. S.
,
2020
, “
Broadband Mid-Infrared Optical Parametric Oscillator for Dynamic High-Temperature Multi-Species Measurements in Reacting Systems
,”
Opt. Lett.
,
45
(
2
), pp.
491
494
. 10.1364/OL.382308
54.
Neupane
,
S.
,
Rahman
,
R. K.
,
Baker
,
J.
,
Arafin
,
F.
,
Ninnemann
,
E.
,
Thurmond
,
K.
,
Wang
,
C.-H.
,
Masunov
,
A. E.
, and
Vasu
,
S. S.
,
2020
, “
DMMP Pyrolysis and Oxidation Studies at High Temperature Inside a Shock Tube Using Laser Absorption Measurements of CO
,”
Combust. Flame
,
214
, pp.
14
24
. 10.1016/j.combustflame.2019.12.014
55.
Zhang
,
X.
,
Ye
,
W.
,
Shi
,
J. C.
,
Wu
,
X. J.
,
Zhang
,
R. T.
, and
Luo
,
S. N.
,
2017
, “
Shock-Induced Ignition of Methane, Ethane, and Methane/Ethane Mixtures Sensitized by NO2
,”
Energy Fuels
,
31
(
11
), pp.
12780
12790
. 10.1021/acs.energyfuels.7b01632
56.
Frenklach
,
M.
,
Lee
,
J. H.
,
White
,
J. N.
, and
Gardiner
,
W. C.
,
1981
, “
Oxidation of Hydrogen Sulfide
,”
Combust. Flame
,
41
, pp.
1
16
. 10.1016/0010-2180(81)90035-3
57.
Seery
,
D. J.
, and
Bowman
,
C. T.
,
1970
, “
An Experimental and Analytical Study of Methane Oxidation Behind Shock Waves
,”
Combust. Flame
,
14
(
1
), pp.
37
47
. 10.1016/S0010-2180(70)80008-6
58.
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2019
, “
An Optimised Chemical Kinetic Model for the Combustion of Fuel Mixtures of Syngas and Natural gas
,”
Fuel
,
262
, p.
116611
.
You do not currently have access to this content.