Abstract

Existing researches on two-row film cooling mainly focused on double-jet film cooling. However, researches on the effects by combining different kinds of hole shapes on film cooling performance are quite limited. In order to improve the film cooling effectiveness, the three-dimensional numerical method is utilized to investigate the effects of a novel structure composed of two-row holes with different shapes and arrangements on the adiabatic film cooling effectiveness with the blowing ratio of M = 1.5. To achieve this purpose, 30 different cases with two-row holes are designed and their film cooling effectiveness are compared with those of other seven cases with a single hole. Cases with two-row holes are designed by setting cylindrical, elliptical, or super-elliptical holes as the first-row, and arranging cylindrical holes with 30 deg, 45 deg, 60 deg, and 90 deg compound angles as the second row. The realizable k–ɛ turbulence model with enhanced wall function is utilized for all cases under identical boundary conditions. Similar film cooling performances are observed for cases with elliptical and super-elliptical holes being the first row, since the maximum deviation of film cooling effectiveness is less than 10%. It is found that the case integrates both a cylindrical hole and a cylindrical hole with 90 deg compound angle can greatly improve the film cooling performance with a higher discharge coefficient. However, the staggered case with an elliptical hole as both first- and second row gives the best film cooling effectiveness and the worst discharge coefficient due to the biggest resistance for the coolant flowing into the film hole.

References

References
1.
MacIsaac
,
B.
, and
Langton
,
R.
,
2001
,
Gas Turbine Propulsion Systems
,
Wiley
,
Hoboken, NJ
.
2.
MacPhee
,
D. W.
, and
Beyene
,
A.
,
2017
, “
Impact of Air Quality and Site Selection on Gas Turbine Engine Performance
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020903
. 10.1115/1.4038118
3.
Boyce
,
M. P.
,
2006
,
Gas Turbine Engineering Handbook
, 3rd ed.,
Gulf Professional Publishing
,
Houston, TX
. pp.
47
48
.
4.
Hennecke
,
D. K.
,
1982
,
Turbine Cooling in Aeroengines
,
Von Karman Inst
,
Brussels
.
5.
Masci
,
R.
, and
Sciubba
,
E.
,
2017
, “
A Lumped Thermodynamic Model of Gas Turbine Blade Cooling: Prediction of First-Stage Blades Temperature and Cooling Flow Rates
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
. 10.1115/1.4038462
6.
Barker
,
A.
,
2004
,
Composite Materials for Aircraft Structures
,
AIAA, Reston
,
VA
.
7.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
8.
Xie
,
G. N.
,
Liu
,
X. T.
, and
Yan
,
H. B.
,
2017
, “
Film Cooling Performance and Flow Characteristics of Internal Cooling Channels With Continuous/Truncated Ribs
,”
Int. J. Heat Mass Transfer
,
105
, pp.
67
75
. 10.1016/j.ijheatmasstransfer.2016.09.065
9.
Sun
,
X. K.
,
Zhao
,
G.
,
Jiang
,
P. X.
,
Peng
,
W.
, and
Wang
,
J.
,
2018
, “
Influence of Hole Geometry on Film Cooling Effectiveness for a Constant Exit Flow Area
,”
Appl. Therm. Eng.
,
130
, pp.
1404
1415
. 10.1016/j.applthermaleng.2017.11.117
10.
Khalil
,
A.
,
Kayed
,
H.
,
Hanafi
,
A.
,
Nemitallah
,
M.
, and
Habib
,
M.
,
2019
, “
Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042206
. 10.1115/1.4042824
11.
Zhang
,
C. J.
,
Xu
,
G. Q.
,
Li
,
H. W.
,
Sun
,
J. N.
, and
Cai
,
N.
,
2014
, “
The Effect of Weak Crossflow on the Heat Transfer Characteristics of Short-Distance Impinging Cooling
,”
ASME J. Heat Transfer
,
136
(
11
), pp.
1
10
. 10.1115/1.4028081
12.
Abdala
,
A. M. M.
, and
Elwekeel
,
F. N. M.
,
2016
, “
An Influence of Novel Upstream Steps on Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
93
, pp.
86
96
. 10.1016/j.ijheatmasstransfer.2015.10.007
13.
Zhang
,
F.
,
Wang
,
X. J.
, and
Li
,
J.
,
2016
, “
The Effect of Upstream Steps With Unevenly Spanwise Distributed Height on Rectangular Hole Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1209
1221
. 10.1016/j.ijheatmasstransfer.2016.07.001
14.
Zheng
,
D. R.
,
Wang
,
X. J.
,
Zhang
,
F.
, and
Yuan
,
Q.
,
2017
, “
Numerical Investigation on the Effects of the Divided Steps on Film Cooling Performance
,”
Appl. Therm. Eng.
,
124
, pp.
652
662
. 10.1016/j.applthermaleng.2017.06.019
15.
Lee
,
K.-D.
,
Choi
,
D.-W.
, and
Kim
,
K.-Y.
,
2013
, “
Optimization of Ejection Angles of Double-Jet Film-Cooling Holes Using RBNN Model
,”
Int. J. Therm. Sci.
,
73
, pp.
69
78
. 10.1016/j.ijthermalsci.2013.05.015
16.
Zhang
,
G. H.
,
Xie
,
G. N.
, and
Sundén
,
B.
,
2018
, “
Enhanced Heat Transfer and Thermal Performance of a Blade With Tree-Shaped Film Cooling Channels
,”
ASME
Paper No. GT2018-75918. 10.1115/gt2018-75918
17.
Zhu
,
R.
,
Xie
,
G. N.
, and
Simon
,
T. W.
,
2018
, “
New Designs of Novel Holes Based on Cylindrical Configurations for Improving Film Cooling Effectiveness
,”
ASME
Paper No. GT2018-76380. 10.1115/gt2018-76380
18.
Gao
,
W. J.
,
Yue
,
Z. F.
,
Li
,
L.
,
Zhao
,
Z. N.
, and
Tong
,
F. J.
,
2017
, “
Numerical Simulation on Film Cooling With Compound Angle of Blade Leading Edge Model for Gas Turbine
,”
Int. J. Heat Mass Transfer
,
115
, pp.
839
855
. 10.1016/j.ijheatmasstransfer.2017.07.105
19.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2006
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
. 10.1115/1.2720508
20.
Jubran
,
B. A.
, and
Maiteh
,
B. Y.
,
1999
, “
Film Cooling and Heat Transfer From a Combination of Two Rows of Simple and/or Compound Angle Holes in Inline and/or Staggered Configuration
,”
Heat Mass Transfer
,
34
(
6
), pp.
495
502
. 10.1007/s002310050287
21.
Ahn
,
J.
,
Jung
,
I. S.
, and
Lee
,
J. S.
,
2003
, “
Film Cooling From Two Rows of Holes With Opposite Orientation Angles Injectant Behavior and Adiabatic Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
91
99
. 10.1016/S0142-727X(02)00200-X
22.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2010
, “
Film Cooling Effectiveness Comparison Between Shaped- and Double Jet Film Cooling Holes in a Row Arrangement
,”
ASME
Paper No. GT 2010-22604
. 10.1115/gt2010-22604
23.
Yao
,
J. X.
,
Xu
,
J.
,
Zhang
,
K.
, and
Lei
,
J.
,
2018
, “
Interaction of Flow and Film-Cooling Effectiveness Between Double-Jet Film-Cooling Holes With Various Spanwise Distances
,”
ASME J. Turbomach.
,
140
(
12
), p.
121011
. 10.1115/1.4041809
24.
Yao
,
J. X.
,
Zhang
,
K.
,
Wu
,
J. M.
,
Lei
,
J.
,
Fang
,
Y.
, and
Wright
,
L. M.
,
2019
, “
An Experimental Investigation on Streamwise Distance and Density Ratio Effects on Double-Jet Film-Cooling
,”
Appl. Therm. Eng.
,
156
, pp.
410
421
. 10.1016/j.applthermaleng.2019.04.081
25.
Choi
,
D. W.
,
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2013
, “
Analysis and Optimization of Double-Jet Film-Cooling Holes
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
246
254
. 10.2514/1.T4060
26.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
199
216
. 10.1007/s00158-006-0051-9
27.
Jiang
,
Y.
,
Capone
,
L.
,
Ireland
,
P.
, and
Romero
,
E.
, “
A Detailed Study of the Interaction Between Two Rows of Cooling Holes
,”
ASME J. Turbomach.
,
140
(
4
), p.
041008
. 10.1115/1.4038833
28.
Bashir
,
M. H.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Film Cooling Effectiveness for Three-Row Compound Angle Hole Design on Flat Plate Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
115
, pp.
918
929
. 10.1016/j.ijheatmasstransfer.2017.08.077
29.
Luo
,
J. X.
,
2015
, “
Research of External Film Cooling Performance of Turbine Blade With Different Internal Cooling Structures
,”
Ph.D. thesis
,
Northwestern Polytechnical University
,
Xi’an, China
.
You do not currently have access to this content.