Abstract

Fine migration is always considered as one of the major mechanisms that are responsible for formation damage. The unwanted reduction of reservoir permeability would result in the decline of water injection and consequent oil production, especially for the unconsolidated sandstone reservoir. For better understanding, the mechanisms of formation damage in pore-scale, a new three-dimensional pore-scale network model (PNM) is proposed and developed to simulate formation damage caused by particle detachment, migration, and capture in pore throats based on force analysis. Experiments are also conducted on the formation damage characteristics of an unconsolidated core. Both X-ray diffraction and scanning electron microscope (SEM) are applied to understand the microscopic reservoir properties. The experimental results show that the studied core has a strong flowrate sensitivity. A comparison between experimental results and PNM simulation results is conducted. The simulated results agree well with the experimental data, which approves the efficiency and accuracy of the PNM. Sensitivity analysis results show that larger particle sizes, higher flowrate, higher fluid viscosity, and lower ion concentration of the fluids would contribute to the formation damage, which could provide guidance for the development of unconsolidated sandstone reservoirs with strong sensitivity.

References

1.
Oliveira
,
M. A.
,
Vaz
,
A. S.
,
Siqueira
,
F. D.
,
Yang
,
Y.
,
You
,
Z.
, and
Bedrikovetsky
,
P.
,
2014
, “
Slow Migration of Mobilized Fines During Flow in Reservoir Rocks: Laboratory Study
,”
J. Pet. Sci. Eng.
,
122
, pp.
534
541
. 10.1016/j.petrol.2014.08.019
2.
Rousseau
,
D.
,
Latifa
,
H.
, and
Nabzar
,
L.
,
2008
, “
Injectivity Decline From Produced-Water Reinjection: New Insights on in-Depth Particle-Deposition Mechanisms
,”
SPE Prod. Oper.
,
23
(
4
), pp.
525
531
.
3.
Wang
,
H.
,
Taborda
,
E. A.
,
Vladimir
,
A.
, and
Cortés
,
F. B.
,
2019
, “
Influence of Silica Nanoparticles on Heavy oil Microrheology via Time-Domain NMR T2 and Diffusion Probes
,”
Fuel
,
241
, pp.
962
972
. 10.1016/j.fuel.2018.12.103
4.
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Filter Cake Properties of Water-Based Drilling Fluids Under Static and Dynamic Conditions Using Computed Tomography Scan
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042201
. 10.1115/1.4023483
5.
Khilar
,
K. C.
, and
Fogler
,
H. S.
,
1998
,
Migrations of Fines in Porous Media
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
6.
Civan
,
F.
,
2007
,
“Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation
, 2nd ed.,
Gulf Publishing Company
,
Houston, TX
.
7.
Tiab
,
D.
, and
Donaldson
,
E. C.
,
2012
,
Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties
, 3rd ed.,
Elsevier/Gulf Professional Publishing
,
Amsterdam
.
8.
Marquez
,
M.
,
Williams
,
W.
,
Knobles
,
M.
, and
Bedrikovetsky
,
P.
,
2014
, “
Fines Migration in Fractured Wells: Integrating Modeling With Field and Laboratory Data
,”
SPE Product. Operat.
,
29
(
04
), pp.
309
322
. 10.2118/165108-PA
9.
Guo
,
T.
,
Gong
,
F.
,
Lin
,
X.
,
Lin
,
Q.
, and
Wang
,
X.
,
2018
, “
Experimental Investigation on Damage Mechanism of Guar Gum Fracturing Fluid to Low-Permeability Reservoir Based on Nuclear Magnetic Resonance
,”
ASME J. Energy Res. Technol.
,
140
(
7
), p.
072906
. 10.1115/1.4039324
10.
Wang
,
H.
,
Alvarado
,
V.
,
McLaughlin
,
J. F.
,
Bagdonas
,
D. A.
,
Kaszuba
,
J. P.
,
Campbell
,
E.
, and
Grana
,
D.
,
2018
, “
Low-Field Nuclear Magnetic Resonance Characterization of Carbonate and Sandstone Reservoirs From Rock Spring Uplift of Wyoming
,”
J. Geophys. Res.: Solid Earth.
,
123
(
9
), pp.
7444
7460
. 10.1029/2018JB015779
11.
Liu
,
P. Y.
,
Yan
,
X.
,
Yao
,
J.
, and
Sun
,
S.
,
2019
, “
Modeling and Analysis of the Acidizing Process in Carbonate Rocks Using a Two-Phase Thermal-Hydrologic-Chemical Coupled Model
,”
Chem. Eng. Sci.
,
207
, pp.
215
234
. 10.1016/j.ces.2019.06.017
12.
Rosenbrand
,
E.
,
Haugwitz
,
C.
,
Jacobsen
,
P. S. M.
,
Kjøller
,
C.
, and
Fabricius
,
I. L.
,
2014
, “
The Effect of hot Water Injection on Sandstone Permeability
,”
Geothermics.
,
50
, pp.
155
166
. 10.1016/j.geothermics.2013.09.006
13.
Rosenbrand
,
E.
,
Kjøller
,
C.
,
Riis
,
J. F.
,
Kets
,
F.
, and
Fabricius
,
I. L.
,
2015
, “
Different Effects of Temperature and Salinity on Permeability Reduction by Fines Migration in Berea Sandstone
,”
Geothermics.
,
53
, pp.
225
235
. 10.1016/j.geothermics.2014.06.004
14.
Wang
,
Z. H.
,
Qiu
,
Y. L.
,
Guo
,
P.
,
Du
,
J. F.
,
Liu
,
H.
,
Hu
,
Y.
, and
Zeng
,
F.
,
2019
, “
Experimental Investigation of the Damage Mechanisms of Drilling Mud in Fractured Tight gas Reservoir
,”
ASME. J. Energy Resour. Technol.
,
141
(
9
), p.
092907
. 10.1115/1.4043247
15.
Zhang
,
D.
,
Kang
,
Y. L.
, and
You
,
L. J.
,
2019
, “
Investigation of Formation Damage Induced During Drill-In Process of Ultradeep Fractured Tight Sandstone Gas Reservoirs
,”
ASME. J. Energy Resour. Technol.
,
141
(
7
), p.
072901
. 10.1115/1.4042236
16.
Kartic
,
C.
, and
Vaidya
,
R. N.
,
1990
, “
Colloidal-induced Fines Release in Porous Media
,”
J. Pet. Sci. Eng.
,
4
(
3
), pp.
213
221
. 10.1016/0920-4105(90)90011-Q
17.
Hongwei
,
C.
,
Qihong
,
F.
,
Xianmin
,
Z.
,
Sen
,
W.
,
Wensheng
,
Z.
, and
Fan
,
L.
,
2019
, “
Well Placement Optimization with Cat Swarm Optimization Algorithm Under Oilfield Development Constraints
,”
ASME. J. Energy Resour. Technol.
,
141
(
1
), p.
012902
. 10.1115/1.4040754
18.
Zeinijahromi
,
A.
,
Farajzadeh
,
R.
,
Bruining
,
J. H.
, and
Bedrikovetsky
,
P.
,
2016
, “
Effect of Fines Migration on oil–Water Relative Permeability During two-Phase Flow in Porous Media
,”
Fuel
,
176
, pp.
222
236
. 10.1016/j.fuel.2016.02.066
19.
Shen
,
Y.
,
Ge
,
H. K.
,
Zhang
,
X. L.
,
Chang
,
L.
,
Liu
,
D.
, and
Liu
,
J.
,
2018
, “
Impact of Fracturing Liquid Absorption on the Production and Waterblock Unlocking for Shale gas Reservoir
,”
Adv. Geo-Energy Res.
,
2
(
2
), pp.
163
172
. 10.26804/ager.2018.02.05
20.
You
,
Z.
,
Badalyan
,
A.
,
Yang
,
Y.
,
Bedrikovetsky
,
P.
, and
Hand
,
M.
,
2019
, “
Fines Migration in Geothermal Reservoirs: Laboratory and Mathematical Modelling
,”
Geothermics.
,
77
, pp.
344
367
. 10.1016/j.geothermics.2018.10.006
21.
Tang
,
G. Q.
, and
Morrow
,
N. R.
,
1999
, “
Influence of Brine Composition and Fines Migration on Crude oil/Brine/Rock Interactions and oil Recovery
,”
J. Pet. Sci. Eng.
,
24
(
2–4
), pp.
99
111
. 10.1016/S0920-4105(99)00034-0
22.
Hussain
,
F.
,
Zeinijahromi
,
A.
,
Bedrikovetsky
,
P.
,
Badalyan
,
A.
,
Carageorgos
,
T.
, and
Cinar
,
Y.
,
2013
, “
An Experimental Study of Improved oil Recovery Through Fines-Assisted Waterflooding
,”
J. Pet. Sci. Eng.
,
109
, pp.
187
197
. 10.1016/j.petrol.2013.08.031
23.
You
,
Z.
,
Yang
,
Y.
,
Badalyan
,
A.
, and
Bedrikovetsky
,
P.
,
2016
, “
Mathematical Modelling of Fines Migration in Geothermal Reseroirs
,”
Geothermics
,
59
, pp.
123
133
. 10.1016/j.geothermics.2015.05.008
24.
Bedrikovetsky
,
P.
,
Zeinijahromi
,
A.
, and
Siqueira
,
F. D.
,
2012
, “
Particle Detachment Under Velocity Alternation During Suspension Transport in Porous Media
,”
Transp. Porous Med.
,
91
(
1
), pp.
173
197
. 10.1007/s11242-011-9839-1
25.
Wong
,
R. C.
, and
Mettananda
,
D. C.
,
2010
, “
Permeability Reduction in Qishn Sandstone Specimens due to Particle Suspension Injection
,”
Transp Porous Med.
,
81
(
1
), pp.
105
122
. 10.1007/s11242-009-9387-0
26.
Sharma
,
M. M.
, and
Yortsos
,
Y. C.
,
1987
, “
Fines Migration in Porous Media
,”
AIChE J.
,
33
(
10
), pp.
1654
1661
. 10.1002/aic.690331009
27.
Civan
,
F.
,
2007
, “
Formation Damage Mechanisms and Their Phenomenological Modeling–An Overview
,”
European Formation Damage Conference
,
Scheveningen
,
May 30–June 1
, Paper No. SPE No. 107857.
28.
Chang
,
Y. M.
, and
Shan
,
C.
,
2004
, “
Network Simulation for Deep Bed Filtration of Brownian Particles
,”
Chem. Eng. Sci.
,
59
(
21
), pp.
4467
4479
. 10.1016/j.ces.2004.07.023
29.
Feng
,
Q. H.
,
Li
,
S.
,
Han
,
X. D.
, and
Wang
,
S.
,
2016
, “
Network Simulation for Formation Impairment due to Suspended Particles in Injected Water
,”
J. Pet. Sci. Eng.
,
133
, pp.
384
391
. 10.1016/j.petrol.2015.06.027
30.
You
,
Z.
,
Bedrikovetsky
,
P.
,
Badalyan
,
A.
, and
Hand
,
M.
,
2015
, “
Particle Mobilization in Porous Media: Temperature Effects on Competing Electrostatic and Drag Forces
,”
Geophys. Res. Lett.
,
42
(
8
), pp.
2852
2860
. 10.1002/2015GL063986
31.
Reynolds
,
C. A.
,
Blunt
,
M. J.
, and
Krevor
,
S.
,
2018
, “
Multiphase Flow Characteristics of Heterogeneous Rocks From CO2 Storage Reservoirs in the United Kingdom
,”
Water Resour. Res.
,
54
(
2
), pp.
729
745
. 10.1002/2017WR021651
32.
Yang
,
Y. F.
,
Li
,
Y. W.
, and
Yao
,
J.
,
2019
, “
Formation Damage Evaluation of a Sandstone Reservoir via Pore-Scale X-ray Computed Tomography Analysis
,”
J. Pet. Sci. Eng.
,
183
, p.
106356
. 10.1016/j.petrol.2019.106356
33.
Fatt
,
I.
,
1956
, “
The Network Model of Porous Media
,”
Trans. AIME
,
207
(
01
), pp.
144
181
. 10.2118/574-G
34.
Yang
,
Y. F.
,
Wang
,
K.
,
Zhang
,
L.
,
Sun
,
H.
,
Zhang
,
K.
, and
Ma
,
J.
,
2019
, “
Pore-scale Simulation of Shale oil Flow Based on Pore Network Model
,”
Fuel
,
251
, pp.
683
692
. 10.1016/j.fuel.2019.03.083
35.
Wang
,
S.
,
Feng
,
Q.
,
Javadpour
,
F.
,
Zha
,
M.
, and
Cui
,
R.
,
2020
, “
Multiscale Modeling of Gas Transport in Shale Matrix: An Integrated Study of Molecular Dynamics and Rigid-Pore-Network Model
,”
SPE J.
,
25
(
03
), pp.
1416
1442
. 10.2118/187286-pa
36.
Golparvar
,
A.
,
Zhou
,
Y.
,
Wu
,
K.
,
Ma
,
J.
, and
Yu
,
Z.
,
2018
, “
A Comprehensive Review of Pore Scale Modeling Methodologies for Multiphase Flow in Porous Media
,”
Adv. Geo-Energ. Res.
,
2
(
4
), pp.
418
440
. 10.26804/ager.2018.04.07
37.
Oostrom
,
M.
,
Mehmani
,
Y.
,
Romero-Gomez
,
P.
,
Tang
,
Y.
,
Liu
,
H.
,
Yoon
,
H.
,
Kang
,
Q.
,
Joekar-Niasar
,
V.
,
Balhoff
,
M. T.
,
Dewers
,
T.
,
Tartakovsky
,
G. D.
,
Leist
,
E. A.
,
Hess
,
N. J.
,
Perkins
,
W. A.
,
Rakowski
,
C. L.
,
Richmond
,
M. C.
,
Serkowski
,
J. A.
,
Werth
,
C. J.
,
Valocchi
,
A. J.
,
Wietsma
,
T. W.
, and
Zhang
,
C.
,
2016
, “
Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments
,”
Comput. Geosci.
,
20
(
4
), pp.
857
879
. 10.1007/s10596-014-9424-0
38.
Weishaupt
,
K.
,
Joekar-Niasar
,
V.
, and
Helmig
,
R.
,
2019
, “
An Efficient Coupling of Free Flow and Porous Media Flow Using the Pore-Network Modeling Approach
,”
J. Comput. Phys.
,
1
, p.
100011
. 10.1016/j.jcpx.2019.100011
39.
Bedrikovetsky
,
P.
,
You
,
Z. J.
,
Badalyan
,
A.
,
Osipov
,
Y.
, and
Kuzmina
,
L.
,
2017
, “
Analytical Model for Straining-Dominant Large-Retention Depth Filtration
,”
Chem Eng. J.
,
330
, pp.
1148
1159
. 10.1016/j.cej.2017.08.031
40.
Freitas
,
A. M.
, and
Sharma
,
M. M.
,
2001
, “
Detachment of Particles From Surfaces: an AFM Study
,”
J. Colloid Interface Sci.
,
233
(
1
), pp.
73
82
. 10.1006/jcis.2000.7218
41.
Jiao
,
D.
, and
Sharma
,
M. M.
,
1994
, “
Mechanism of Cake Buildup in Crossflow Filtration of Colloidal Suspensions
,”
J. Colloid Interface Sci.
,
162
(
2
), pp.
454
462
. 10.1006/jcis.1994.1060
42.
Bedrikovetsky
,
P.
,
Siqueira
,
F. D.
,
Furtado
,
C. A.
, and
Souza
,
A. L.
,
2011
, “
Modified Particle Detachment Model for Colloidal Transport in Porous Media
,”
Transp. Porous. Med.
,
86
(
2
), pp.
353
383
. 10.1007/s11242-010-9626-4
43.
Shook
,
C. A.
, and
Roco
,
M. C.
,
1991
,
Slurry Flow: Principles and Practices
,
Butterworth-Heinemann
,
Stoneham, MA
,
38
, pp.
9
10
.
44.
Gao
,
C. H.
,
2008
, “
Understanding Capture of non-Brownian Particles in Porous Media with Network Model
,”
Asia-Pac. J. Eng.
,
3
(
3
), pp.
298
306
. 10.1002/apj.149
45.
Jalel
,
O.
, and
Jean-Francois
,
V.
,
1999
, “
A two-Dimensional Network Model to Simulate Permeability Decrease Under Hydrodynamic Effect of Particle Release and Capture
,”
Transp. Porous. Med.
,
37
(
3
), pp.
303
325
. 10.1023/A:1006690700000
46.
Wang
,
S.
,
Han
,
X.
,
Dong
,
Y.
, and
Shi
,
H.
,
2017
, “
Mechanisms of Reservoir Pore/Throat Characteristics Evolution During Long-Term Waterflooding
,”
Adv. Geo-Energ. Res.
,
1
(
3
), pp.
148
157
. 10.26804/ager.2017.03.02
47.
Blunt
,
M. J.
,
2001
, “
Flow in Porous Media- Pore Network Models and Multiphase Flow
,”
Curr. Opin. Colloid Interface Sci.
,
6
(
3
), pp.
197
207
. 10.1016/S1359-0294(01)00084-X
48.
Xu
,
L.
,
Liu
,
X.
, and
Liang
,
L.
,
2014
, “
A Pore Network Model Reconstruction Method via Genetic Algorithm
,”
J. Nat. Gas. Sci. Eng.
,
21
, pp.
907
914
. 10.1016/j.jngse.2014.09.038
49.
Sun
,
C. Z.
,
Jiang
,
H. Q.
,
Li
,
J. J.
, and
Ye
,
S. J.
,
2011
, “
Pore Network Modeling of a Polymer Flooding Microscopic Seepage Mechanism
,”
Petrol. Sci. Technol.
,
29
(
17
), pp.
1803
1810
. 10.1080/10916466.2011.578098
50.
Valvatne
,
O. H.
, and
Blunt
,
M. J.
,
2004
, “
Predictive Pore-Scale Modeling of Two-Phase Flow in Mixed wet Media
,”
Water Resour. Res.
,
40
(
7
), p.
W07406
. 10.1029/2003WR002627
You do not currently have access to this content.