Abstract

In the current paper, the behavior of zinc oxide/SAE50 nano lubricant as a part of the new generation of coolants and lubricants is examined using response surface method (RSM). The data used in this study were viscosity at dissimilar volume concentrations (0–1.5%) and temperatures (5–50 °C) for dissimilar shear rate values. Therefore, sensitivity analysis based on variation of nanoparticle (NP) concentration and temperature was also implemented. The findings revealed that enhancing the volume fraction (φ) exacerbates the viscosity sensitivity to temperature. Given the noteworthy deviance between the experimental viscosity and the data forecasted by existing classical viscosity correlations, a novel regression model is gained. R2 and adj-R2 for this model were calculated as 0.9966 and 0.9965, respectively, which represent a very good prediction with a standard deviation of 3%.

References

References
1.
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
. 10.1115/1.4041929
2.
Abdollahzadeh Jamalabadi
,
M. Y.
,
Ghasemi
,
M.
,
Alamian
,
R.
,
Wongwises
,
S.
,
Afrand
,
M.
, and
Shadloo
,
M. S.
,
2019
, “
Modeling of Subcooled Flow Boiling With Nanoparticles Under the Influence of a Magnetic Field
,”
Symmetry
,
11
(
10
), p.
1275
. 10.3390/sym11101275
3.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2019
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042003
. 10.1115/1.4042004
4.
Rahimi
,
A.
,
Kasaeipoor
,
A.
,
Amiri
,
A.
,
Doranehgard
,
M. H.
,
Malekshah
,
E. H.
, and
Kolsi
,
L.
,
2018
, “
Lattice Boltzmann Method Based on Dual-MRT Model for Three-Dimensional Natural Convection and Entropy Generation in CuO–Water Nanofluid Filled Cuboid Enclosure Included With Discrete Active Walls
,”
Comput. Math. Appl.
,
75
(
5
), pp.
1795
1813
. 10.1016/j.camwa.2017.11.037
5.
Abdollahzadeh Jamalabadi
,
M. Y.
,
Alamian
,
R.
,
Yan
,
W.-M.
,
Li
,
L. K.
,
Leveneur
,
S.
, and
Safdari Shadloo
,
M.
,
2019
, “
Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers
,”
Symmetry
,
11
(
11
), p.
1353
. 10.3390/sym11111353
6.
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2017
, “
Particle Swarm Optimization of Thermal Enhanced Oil Recovery From Oilfields With Temperature Control
,”
Appl. Therm. Eng.
,
123
, pp.
658
669
. 10.1016/j.applthermaleng.2017.05.109
7.
Schatte
,
G. A.
,
Kohlhepp
,
A.
,
Gschnaidtner
,
T.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2018
, “
Heat Transfer to Supercritical Water in Advanced Power Engineering Applications: An Industrial Scale Test Rig
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062002
. 10.1115/1.4039610
8.
Rashidi
,
M. M.
,
Nasiri
,
M.
,
Shadloo
,
M. S.
, and
Yang
,
Z.
,
2017
, “
Entropy Generation in a Circular Tube Heat Exchanger Using Nanofluids: Effects of Different Modeling Approaches
,”
Heat Transfer Eng.
,
38
(
9
), pp.
853
866
. 10.1080/01457632.2016.1211916
9.
Sarafraz
,
M.
,
Shadloo
,
M. S.
,
Tian
,
Z.
,
Tlili
,
I.
,
Alkanhal
,
T. A.
,
Safaei
,
M. R.
,
Goodarzi
,
M.
, and
Arjomandi
,
M.
,
2019
, “
Convective Bubbly Flow of Water in an Annular Pipe: Role of Total Dissolved Solids on Heat Transfer Characteristics and Bubble Formation
,”
Water
,
11
(
8
), p.
1566
. 10.3390/w11081566
10.
Venkatesan
,
S. P.
, and
Kadiresh
,
P. N.
,
2018
, “
Combustion Performance Study of Aqueous Aluminum Oxide Nanofluid Blends in Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042203
. 10.1115/1.4042086
11.
Mabood
,
F.
,
Ibrahim
,
S.
,
Rashidi
,
M.
,
Shadloo
,
M.
, and
Lorenzini
,
G.
,
2016
, “
Non-uniform Heat Source/Sink and Soret Effects on MHD Non-Darcian Convective Flow Past a Stretching Sheet in a Micropolar Fluid With Radiation
,”
Int. J. Heat Mass Transfer
,
93
, pp.
674
682
.
12.
Nasiri
,
H.
,
Jamalabadi
,
M. Y. A.
,
Sadeghi
,
R.
,
Safaei
,
M. R.
,
Nguyen
,
T. K.
, and
Shadloo
,
M. S.
,
2019
, “
A Smoothed Particle Hydrodynamics Approach for Numerical Simulation of Nano-fluid Flows
,”
J. Therm. Anal. Calorim.
,
135
(
3
), pp.
1733
1741
. 10.1007/s10973-018-7022-4
13.
Safaei
,
M. R.
,
Ahmadi
,
G.
,
Goodarzi
,
M. S.
,
Safdari Shadloo
,
M.
,
Goshayeshi
,
H. R.
, and
Dahari
,
M.
,
2016
, “
Heat Transfer and Pressure Drop in Fully Developed Turbulent Flows of Graphene Nanoplatelets–Silver/Water Nanofluids
,”
Fluids
,
1
(
3
), p.
20
. 10.3390/fluids1030020
14.
Siavashi
,
M.
,
Karimi
,
K.
,
Xiong
,
Q.
, and
Doranehgard
,
M. H.
,
2019
, “
Numerical Analysis of Mixed Convection of Two-Phase Non-Newtonian Nanofluid Flow Inside a Partially Porous Square Enclosure With a Rotating Cylinder
,”
J. Therm. Anal. Calorim.
,
137
, pp.
267
287
.
15.
Nicodemus
,
J. H.
,
Huang
,
X.
,
Dentinger
,
E.
,
Petitt
,
K.
, and
Smith
,
J. H.
,
2019
, “
Effects of Baffle Width on Heat Transfer to an Immersed Coil Heat Exchanger: Experimental Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050901
. 10.1115/1.4045538
16.
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Xiong
,
Q.
,
2020
, “
CFD Study of Heat Transfer and Fluid Flow in a Parabolic Trough Solar Receiver With Internal Annular Porous Structure and Synthetic Oil–Al2O3 Nanofluid
,”
Renewable Energy
,
145
, pp.
2598
2614
.
17.
Khodadadi
,
H.
,
Aghakhani
,
S.
,
Majd
,
H.
,
Kalbasi
,
R.
,
Wongwises
,
S.
, and
Afrand
,
M.
,
2018
, “
A Comprehensive Review on Rheological Behavior of Mono and Hybrid Nanofluids: Effective Parameters and Predictive Correlations
,”
Int. J. Heat Mass Transfer
,
127
, pp.
997
1012
. 10.1016/j.ijheatmasstransfer.2018.07.103
18.
Esfe
,
M. H.
, and
Afrand
,
M.
,
2019
, “
An Updated Review on the Nanofluids Characteristics
,”
J. Therm. Anal. Calorim.
,
138
(
6
), pp.
4091
4101
. 10.1007/s10973-019-08406-2
19.
Shahsavani
,
E.
,
Afrand
,
M.
, and
Kalbasi
,
R.
,
2018
, “
Using Experimental Data to Estimate the Heat Transfer and Pressure Drop of non-Newtonian Nanofluid Flow Through a Circular Tube: Applicable for Use in Heat Exchangers
,”
Appl. Therm. Eng.
,
129
, pp.
1573
1581
. 10.1016/j.applthermaleng.2017.10.140
20.
Toghraie
,
D.
,
Alempour
,
S. M.
, and
Afrand
,
M.
,
2016
, “
Experimental Determination of Viscosity of Water Based Magnetite NF for Application in Heating and Cooling Systems
,”
J. Magn. Magn. Mater.
,
417
, pp.
243
248
. 10.1016/j.jmmm.2016.05.092
21.
Esfe
,
M. H.
,
Afrand
,
M.
,
Yan
,
W.-M.
,
Yarmand
,
H.
,
Toghraie
,
D.
, and
Dahari
,
M.
,
2016
, “
Effects of Temperature and Concentration on Rheological Demeanor of MWCNTs/SiO2 (20–80)-SAE40 Hybrid Nano-Lubricant
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
133
138
.
22.
Sepyani
,
K.
,
Afrand
,
M.
, and
Esfe
,
M. H.
,
2017
, “
An Experimental Evaluation of the Effect of ZnO NPs on the Rheological Demeanor of Engine Oil
,”
J. Mol. Liq.
,
236
, pp.
198
204
. 10.1016/j.molliq.2017.04.016
23.
Eshgarf
,
H.
, and
Afrand
,
M.
,
2016
, “
An Experimental Study on Rheological Demeanor of Non-Newtonian Hybrid Nano-coolant for Application in Cooling and Heating Systems
,”
Exp. Therm. Fluid. Sci.
,
76
, pp.
221
227
. 10.1016/j.expthermflusci.2016.03.015
24.
Afrand
,
M.
,
Toghraie
,
D.
, and
Ruhani
,
B.
,
2016
, “
Effects of Temperature and Nanoparticles Concentration on Rheological Demeanor of Fe3O4–Ag/EG Hybrid Nanofluid: An Experimental Study
,”
Exp. Therm. Fluid. Sci.
,
77
, pp.
38
44
. 10.1016/j.expthermflusci.2016.04.007
25.
Nadooshan
,
A. A.
,
Esfe
,
M. H.
, and
Afrand
,
M.
,
2017
, “
Evaluation of Rheological Demeanor of 10W40 Lubricant Containing Hybrid Nano-material by Measuring Dynamic Viscosity
,”
Phys. E
,
92
, pp.
47
54
. 10.1016/j.physe.2017.05.011
26.
Akbari
,
M.
,
Afrand
,
M.
,
Arshi
,
A.
, and
Karimipour
,
A.
,
2017
, “
An Experimental Study on Rheological Demeanor of Ethylene Glycol Based NF: Proposing a New Correlation as a Function of Silica Concentration and Temperature
,”
J. Mol. Liq.
,
233
, pp.
352
357
. 10.1016/j.molliq.2017.03.020
27.
Esfe
,
M. H.
,
Afrand
,
M.
,
Rostamian
,
S. H.
, and
Toghraie
,
D.
,
2017
, “
Examination of Rheological Demeanor of MWCNTs/ZnO-SAE40 Hybrid Nano-lubricants Under Various Temperatures and Solid φs
,”
Exp. Therm. Fluid. Sci.
,
80
, pp.
384
390
.
28.
Esfe
,
M. H.
, and
Afrand
,
M.
,
2020
, “
Predicting Thermophysical Properties and Flow Characteristics of Nanofluids Using Intelligent Methods: Focusing on ANN Methods
,”
J. Therm. Anal. Calorim.
,
140
(
2
), pp.
501
525
. 10.1007/s10973-019-08789-2
29.
Hemmat Esfe
,
M.
,
Firouzi
,
M.
,
Rostamian
,
H.
, and
Afrand
,
M.
,
2018
, “
Prediction and Optimization of Thermophysical Properties of Stabilized Al2O3/Antifreeze NFs Using Response Surface Methodology
,”
J. Mol. Liq.
,
261
, pp.
14
20
. 10.1016/j.molliq.2018.03.063
30.
Ghasemi
,
N.
, and
Rohani
,
S.
,
2019
, “
Optimization of Cyanide Removal From Wastewaters Using a New Nano-adsorbent Containing ZnO NPs and MOF/Cu and Evaluating its Efficacy and Prediction of Experimental Results With Artificial Neural Networks
,”
J. Mol. Liq.
,
285
, pp.
252
269
. 10.1016/j.molliq.2019.04.085
31.
Hemmat Esfe
,
M.
,
Hassani Ahangar
,
M. R.
,
Rejvani
,
M.
,
Toghraie
,
D.
, and
Hajmohammad
,
M. H.
,
2016
, “
Designing an Artificial Neural Network to Forecast Dynamic Viscosity of Aqueous NF of TiO2 Using Experimental Data
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
192
196
. 10.1016/j.icheatmasstransfer.2016.04.002
32.
Ahmadi
,
M. H.
,
Tatar
,
A.
,
Seifaddini
,
P.
,
Ghazvini
,
M.
,
Ghasempour
,
R.
, and
Sheremet
,
M. A.
,
2018
, “
Thermal Conductivity and Dynamic Viscosity Modeling of Fe2O3/Water NF by Applying Various Connectionist Approaches
,”
Numer. Heat Transfer, Part A
,
74
(
6
), pp.
1301
1322
. 10.1080/10407782.2018.1505092
33.
Hemmat Esfe
,
M.
,
Saedodin
,
S.
,
Sina
,
N.
,
Afrand
,
M.
, and
Rostami
,
S.
,
2015
, “
Designing an Artificial Neural Network to Forecast Thermal Conductivity and Dynamic Viscosity of Ferromagnetic NF
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
50
57
. 10.1016/j.icheatmasstransfer.2015.06.013
34.
Afrand
,
M.
,
Ahmadi Nadooshan
,
A.
,
Hassani
,
M.
,
Yarmand
,
H.
, and
Dahari
,
M.
,
2016
, “
Predicting the Viscosity of Multi-walled Carbon Nanotubes/Water NF by Developing an Optimal Artificial Neural Network Based on Experimental Data
,”
Int. Commun. Heat Mass Transfer
,
77
, pp.
49
53
. 10.1016/j.icheatmasstransfer.2016.07.008
35.
Vakili
,
M.
,
Khosrojerdi
,
S.
,
Aghajannezhad
,
P.
, and
Yahyaei
,
M.
,
2017
, “
A Hybrid Artificial Neural Network-Genetic Algorithm Modeling Approach for Viscosity Estimation of Graphene Nanoplatelets NF Using Experimental Data
,”
Int. Commun. Heat Mass Transfer
,
82
, pp.
40
48
. 10.1016/j.icheatmasstransfer.2017.02.003
36.
Dalkilic
,
A. S.
,
Çebi
,
A.
,
Çelen
,
A. İ.
,
Yıldız
,
O.
,
Acikgoz
,
O.
,
Jumpholkul
,
C.
,
Bayrak
,
M. B.
,
Surana
,
K.
, and
Wongwises
,
S.
,
2016
, “
Prediction of Graphite NFs’ Dynamic Viscosity by Means of Artificial Neural Networks
,”
Int. Commun. Heat Mass Transfer
,
73
, pp.
33
42
. 10.1016/j.icheatmasstransfer.2016.02.010
37.
Aminian
,
A.
,
2017
, “
Predicting the Effective Viscosity of NFs for the Augmentation of Heat Transfer in the Process Industries
,”
J. Mol. Liq.
,
229
, pp.
300
308
. 10.1016/j.molliq.2016.12.071
38.
Ansari
,
H. R.
,
Zarei
,
M. J.
,
Sabbaghi
,
S.
, and
Keshavarz
,
P.
,
2018
, “
A New Comprehensive Model for Relative Viscosity of Various NFs Using Feed-Forward Back-Propagation MLP Neural Networks
,”
Int. Commun. Heat Mass Transfer
,
91
, pp.
158
164
. 10.1016/j.icheatmasstransfer.2017.12.012
39.
Longo
,
G. A.
,
Zilio
,
C.
,
Ortombina
,
L.
, and
Zigliotto
,
M.
,
2017
, “
Application of Artificial Neural Network (ANN) for Modeling Oxide-Based NFs Dynamic Viscosity
,”
Int. Commun. Heat Mass Transfer
,
83
, pp.
8
14
. 10.1016/j.icheatmasstransfer.2017.03.003
40.
Hemmat Esfe
,
M.
,
Abbasian Arani
,
A. A.
, and
Esfandeh
,
S.
,
2018
, “
Improving Engine Oil Lubrication in Light-Duty Vehicles by Using of Dispersing MWCNT and ZnO NPs in 5W50 as Viscosity Index Improvers (VII)
,”
Appl. Therm. Eng.
,
143
, pp.
493
506
. 10.1016/j.applthermaleng.2018.07.034
41.
Darbari
,
B.
,
Rashidi
,
S.
, and
Abolfazli Esfahani
,
J.
,
2016
, “
Sensitivity Analysis of Entropy Generation in NF Flow Inside a Channel by Response Surface Methodology
,”
Entropy.
,
18
(
2
), p.
52
. 10.3390/e18020052
42.
Ahamed
,
M. M.
,
Basha
,
S. J.
, and
Prasad
,
B. D.
,
2019
,
Emerging Trends in Mechanical Engineering
,
Springer
, pp.
153
164
.
43.
Giovanni
,
M.
,
1983
, “
Response Surface Methodology and Product Optimization
,”
Food Technol.
,
37
(
11
), pp.
41
45
.
44.
Rashidi
,
S.
,
Bovand
,
M.
,
Rahbar
,
N.
, and
Esfahani
,
J. A.
,
2018
, “
Steps Optimization and Productivity Enhancement in a NF Cascade Solar Still
,”
Renewable Energy.
,
118
, pp.
536
545
. 10.1016/j.renene.2017.11.048
45.
Vahedi
,
S. M.
,
Pordanjani
,
A. H.
,
Wongwises
,
S.
, and
Afrand
,
M.
,
2019
, “
On the Role of Enclosure Side Walls Thickness and Heater Geometry in Heat Transfer Enhancement of Water–Al 2 O 3 NF in Presence of a Magnetic Field
,”
J. Thermal Analysis Calorimetry.
,
138
, pp.
679
696
.
46.
Vahedi
,
S. M.
,
Pordanjani
,
A. H.
,
Raisi
,
A.
, and
Chamkha
,
A. J.
,
2019
, “
Sensitivity Analysis and Optimization of MHD Forced Convection of a Cu-Water NF Flow Past a Wedge
,”
Eur. Phys. J. Plus
,
134
(
3
), p.
124
. 10.1140/epjp/i2019-12537-x
47.
Pordanjani
,
A. H.
,
Vahedi
,
S. M.
,
Rikhtegar
,
F.
, and
Wongwises
,
S.
,
2019
, “
Optimization and Sensitivity Analysis of Magneto-Hydrodynamic Natural Convection NF Flow Inside a Square Enclosure Using Response Surface Methodology
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1031
1045
. 10.1007/s10973-018-7652-6
48.
Pordanjani
,
A. H.
,
Vahedi
,
S. M.
,
Aghakhani
,
S.
,
Afrand
,
M.
,
Öztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2019
, “
Effect of Magnetic Field on Mixed Convection and Entropy Generation of Hybrid NF in an Inclined Enclosure: Sensitivity Analysis and Optimization
,”
Eur. Phys. J. Plus
,
134
(
8
), p.
412
.
49.
Rejvani
,
M.
,
Alipour
,
A.
,
Vahedi
,
S. M.
,
Chamkha
,
A. J.
, and
Wongwises
,
S.
,
2019
, “
Optimal Characteristics and Heat Transfer Efficiency of SiO2/Water NF for Application of Energy Devices: A Comprehensive Study
,”
Int. J. Energy Res.
,
43
(
14
), pp.
8548
8571
.
50.
Esfe
,
M. H.
,
Mahian
,
O.
,
Hajmohammad
,
M. H.
, and
Wongwises
,
S.
,
2018
, “
Design of a Heat Exchanger Working With Organic NFs Using Multi-objective Particle Swarm Optimization Algorithm and Response Surface Method
,”
Int. J. Heat Mass Transfer.
,
119
, pp.
922
930
. 10.1016/j.ijheatmasstransfer.2017.12.009
You do not currently have access to this content.