Abstract

In this work, a new configuration of the vortex tubes (VTs), called annular VTs, is proposed to improve the temperature separation performance. In the proposed configuration, a compartment has been added on the top of the tube wall that the separated hot outlet is repassed inside it over the hot tube. An axisymmetric swirl model of the Ranque–Hilsch (RH) and annual VTs is numerically simulated, and the thermo-hydraulic characteristics of them are compared for cold mass fractions ranging 0.2–0.8. The results illustrated that a small secondary circulation is created near the cold outlet of the RHVT that is not observed in the annular model. This secondary circulation is a destructive mechanism in VTs that results in more mixing and higher temperature in the cold outlet section. Analyzing the results indicates that using annular VT causes up to 12.51% increment of the hot outlet temperature compared to the RHVT model (which occurs at a mass fraction of 0.23). Also, up to 9.23% reduction of the cold outlet temperature is occurred (which occurs at a mass fraction of 0.37). These explanations prove the improvement of the annular VT compared to that of the conventional VTs.

References

1.
Sadi
,
M.
, and
Arabkoohsar
,
A.
,
2019
, “
Modelling and Analysis of a Hybrid Solar Concentrating-Waste Incineration Power Plant
,”
J. Clean. Prod.
,
216
, pp.
570
584
. 10.1016/j.jclepro.2018.12.055
2.
Deymi-Dashtebayaz
,
M.
,
Akhoundi
,
M.
,
Ebrahimi-Moghadam
,
A.
,
Arabkoohsar
,
A.
,
Jabari Moghadam
,
A.
, and
Farzaneh-Gord
,
M.
,
2020
, “
Thermo-Hydraulic Analysis and Optimization of CuO/Water Nanofluid Inside Helically Dimpled Heat Exchangers
,”
J. Therm. Anal. Calorim.
, pp.
1
16
. 10.1007/s10973-020-09398-0
3.
Dormohammadi
,
R.
,
Farzaneh-Gord
,
M.
,
Ebrahimi-Moghadam
,
A.
, and
Ahmadi
,
M. H.
,
2018
, “
Heat Transfer and Entropy Generation of the Nanofluid Flow Inside Sinusoidal Wavy Channels
,”
J. Mol. Liq.
,
269
, pp.
229
240
. 10.1016/j.molliq.2018.07.119
4.
Siavashi
,
M.
,
Karimi
,
K.
,
Xiong
,
Q.
, and
Doranehgard
,
M. H.
,
2019
, “
Numerical Analysis of Mixed Convection of Two-Phase non-Newtonian Nanofluid Flow Inside a Partially Porous Square Enclosure with a Rotating Cylinder
,”
J. Therm. Anal. Calorim.
,
137
(
1
), pp.
267
287
. 10.1007/s10973-018-7945-9
5.
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
,
Xiong
,
Q.
, and
Li
,
L. K. B.
,
2020
, “
A Numerical Study on Discrete Combustion of Polydisperse Magnesium Aero-suspensions
,”
Energy
,
194
, p.
116872
. 10.1016/j.energy.2019.116872
6.
Athar
,
K.
,
Yassin
,
M. R.
, and
Dehghanpour
,
H.
,
2020
, “
Visualizing Interactions Between Liquid Propane and Heavy Oil
,”
ASME J. Energy Resour. Technol.
,
142
(
11
) pp.
1
21
. 10.1115/1.4047318
7.
Bidabadi
,
M.
,
Xiong
,
Q.
,
Harati
,
M.
,
Yaghoubi
,
E.
,
Doranehgard
,
M. H.
, and
Rahbari
,
A.
,
2018
, “
Study on the Combustion of Micro Organic Dust Particles in Random Media with Considering Effect of Thermal Resistance and Temperature Difference Between Gas and Particles
,”
Chem. Eng. Process.
,
126
, pp.
239
247
. 10.1016/j.cep.2018.03.007
8.
Guo
,
X.
, and
Zhang
,
B.
,
2018
, “
Analysis of the Unsteady Heat and Mass Transfer Processes in a Ranque–Hilsch Vortex Tube: Tube Optimization Criteria
,”
Int. J. Heat Mass Transf.
,
127
, pp.
68
79
. 10.1016/j.ijheatmasstransfer.2018.07.088
9.
Zheng
,
Y.
,
Yang
,
H.
,
Mazaheri
,
H.
,
Aghaei
,
A.
,
Mokhtari
,
N.
, and
Afrand
,
M.
,
2020
, “
An Investigation on the Influence of the Shape of the Vortex Generator on Fluid Flow and Turbulent Heat Transfer of Hybrid Nanofluid in a Channel
,”
J. Therm. Anal. Calorim.
, pp.
1
14
. 10.1007/s10973-020-09415-2
10.
Parvizi
,
S.
,
Arabkoohsar
,
A.
, and
Farzaneh-Gord
,
M.
,
2016
, “
Natural Gas Compositions Variation Effect on Capillary Tube Thermal Mass Flow Meter Performance
,”
Flow Meas. Instrum.
,
50
, pp.
229
236
. 10.1016/j.flowmeasinst.2016.07.007
11.
Aghagoli
,
A.
, and
Sorin
,
M.
,
2019
, “
Thermodynamic Performance of a CO2 Vortex Tube Based on 3D CFD Flow Analysis
,”
Int. J. Refrig.
,
108
, pp.
124
137
. 10.1016/j.ijrefrig.2019.08.022
12.
Thakare
,
H. R.
,
Monde
,
A.
, and
Parekh
,
A. D.
,
2015
, “
Experimental, Computational and Optimization Studies of Temperature Separation and Flow Physics of Vortex Tube: A Review
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1043
1071
. 10.1016/j.rser.2015.07.198
13.
Wang
,
Z.
, and
Suen
,
K. O.
,
2020
, “
Numerical Comparisons of the Thermal Behaviour of air and Refrigerants in the Vortex Tube
,”
Appl. Therm. Eng.
,
164
, p.
114515
. 10.1016/j.applthermaleng.2019.114515
14.
Lagrandeur
,
J.
,
Poncet
,
S.
,
Sorin
,
M.
, and
Khennich
,
M.
,
2019
, “
Thermodynamic Modeling and Artificial Neural Network of Air Counterflow Vortex Tubes
,”
Int. J. Therm. Sci.
,
146
, p.
106097
. 10.1016/j.ijthermalsci.2019.106097
15.
Qyyum
,
M. A.
,
Wei
,
F.
,
Hussain
,
A.
,
Noon
,
A. A.
, and
Lee
,
M.
,
2018
, “
An Innovative Vortex-Tube Turbo-Expander Refrigeration Cycle for Performance Enhancement of Nitrogen-Based Natural-gas Liquefaction Process
,”
Appl. Therm. Eng.
,
144
, pp.
117
125
. 10.1016/j.applthermaleng.2018.08.023
16.
Khait
,
A.
,
Noskov
,
A.
,
Alekhin
,
V.
, and
Bianco
,
V.
,
2018
, “
Analysis of the Local Entropy Generation in a Double-Circuit Vortex Tube
,”
Appl. Therm. Eng.
,
130
, pp.
1391
1403
. 10.1016/j.applthermaleng.2017.11.136
17.
Moraveji
,
A.
, and
Toghraie
,
D.
,
2017
, “
Computational Fluid Dynamics Simulation of Heat Transfer and Fluid Flow Characteristics in a Vortex Tube by Considering the Various Parameters
,”
Int. J. Heat Mass Transf.
,
113
, pp.
432
443
. 10.1016/j.ijheatmasstransfer.2017.05.095
18.
Zhang
,
B.
,
Guo
,
X.
, and
Yang
,
Z.
,
2016
, “
Analysis on the Fluid Flow in Vortex Tube With Vortex Periodical Oscillation Characteristics
,”
Int. J. Heat Mass Transf.
,
103
, pp.
1166
1175
. 10.1016/j.ijheatmasstransfer.2016.08.063
19.
Manimaran
,
R.
,
2016
, “
Computational Analysis of Energy Separation in a Counter-Flow Vortex Tube Based on Inlet Shape and Aspect Ratio
,”
Energy
,
107
, pp.
17
28
. 10.1016/j.energy.2016.04.005
20.
Alekhin
,
V.
,
Bianco
,
V.
,
Khait
,
A.
, and
Noskov
,
A.
,
2015
, “
Numerical Investigation of a Double-Circuit Ranque–Hilsch Vortex Tube
,”
Int. J. Therm. Sci.
,
89
, pp.
272
282
. 10.1016/j.ijthermalsci.2014.11.012
21.
Shmroukh
,
A. N.
,
Radwan
,
A.
,
Abdal-hay
,
A.
,
Serageldin
,
A. A.
, and
Nasr
,
M.
,
2019
, “
New Configurations for Sea Water Desalination System Using Ranque-Hilsch Vortex Tubes
,”
Appl. Therm. Eng.
,
157
, p.
113757
. 10.1016/j.applthermaleng.2019.113757
22.
Li
,
N.
,
Jiang
,
G.
,
Fu
,
L.
,
Tang
,
L.
, and
Chen
,
G.
,
2019
, “
Experimental Study of the Impacts of Cold Mass Fraction on Internal Parameters of a Vortex Tube
,”
Int. J. Refrig.
,
104
, pp.
151
160
. 10.1016/j.ijrefrig.2019.05.002
23.
Xue
,
Y.
,
Binns
,
J. R.
,
Arjomandi
,
M.
, and
Yan
,
H.
,
2019
, “
Experimental Investigation of the Flow Characteristics Within a Vortex Tube With Different Configurations
,”
Int. J. Heat Fluid Flow.
,
75
, pp.
195
208
. 10.1016/j.ijheatfluidflow.2019.01.005
24.
Kaya
,
H.
,
Günver
,
F.
, and
Kirmaci
,
V.
,
2018
, “
Experimental Investigation of Thermal Performance of Parallel Connected Vortex Tubes With Various Nozzle Materials
,”
Appl. Therm. Eng.
,
136
, pp.
287
292
. 10.1016/j.applthermaleng.2018.02.105
25.
Yun
,
J.
,
Kim
,
Y.
, and
Yu
,
S.
,
2018
, “
Feasibility Study of Carbon Dioxide Separation From gas Mixture by Vortex Tube
,”
Int. J. Heat Mass Transf.
,
126
, pp.
353
361
. 10.1016/j.ijheatmasstransfer.2018.04.150
26.
Sadi
,
M.
, and
Farzaneh-Gord
,
M.
,
2014
, “
Introduction of Annular Vortex Tube and Experimental Comparison With Ranque–Hilsch Vortex Tube
,”
Int. J. Refrig.
,
46
, pp.
142
151
. 10.1016/j.ijrefrig.2014.07.004
27.
Skye
,
H. M.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2006
, “
Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube
,”
Int. J. Refrig.
,
29
(
1
), pp.
71
80
. 10.1016/j.ijrefrig.2005.05.004
28.
Bovand
,
M.
,
Valipour
,
M. S.
,
Dincer
,
K.
, and
Tamayol
,
A.
,
2014
, “
Numerical Analysis of the Curvature Effects on Ranque–Hilsch Vortex Tube Refrigerators
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
176
183
. 10.1016/j.applthermaleng.2013.11.045
29.
Shafee
,
A.
,
Arabkoohsar
,
A.
,
Sheikholeslami
,
M.
,
Jafaryar
,
M.
,
Ayani
,
M.
,
Nguyen-Thoi
,
T.
,
Basha
,
D. B.
,
Tlili
,
I.
, and
Li
,
Z.
,
2019
, “
Numerical Simulation for Turbulent Flow in a Tube With Combined Swirl Flow Device Considering Nanofluid Exergy Loss
,”
Phys. A
,
542
, p.
122161
. 10.1016/j.physa.2019.122161
30.
Habib
,
R.
,
Karimi
,
N.
,
Yadollahi
,
B.
,
Doranehgard
,
M. H.
, and
Li
,
L. K. B.
,
2020
, “
A Pore-Scale Assessment of the Dynamic Response of Forced Convection in Porous Media to Inlet Flow Modulations
,”
Int. J. Heat Mass Transf.
,
153
, p.
119657
. 10.1016/j.ijheatmasstransfer.2020.119657
31.
Valizadeh Ardalan
,
M.
,
Alizadeh
,
R.
,
Fattahi
,
A.
,
Adelian Rasi
,
N.
,
Doranehgard
,
M. H.
, and
Karimi
,
N.
,
2020
, “
Analysis of Unsteady Mixed Convection of Cu–Water Nanofluid in an Oscillatory, Lid-Driven Enclosure Using Lattice Boltzmann Method
,”
J. Therm. Anal. Calorim.
, pp.
1
17
. 10.1007/s10973-020-09789-3
32.
Syed
,
S.
, and
Renganathan
,
M.
,
2019
, “
Numerical Investigations on Flow Characteristics and Energy Separation in a Ranque Hilsch Vortex Tube With Hydrogen as Working Medium
,”
Int. J. Hydrogen Energy
,
44
(
51
), pp.
27825
27842
. 10.1016/j.ijhydene.2019.08.239
33.
Ebrahimi-moghadam
,
A.
,
Farzaneh-gord
,
M.
, and
Deymi-dashtebayaz
,
M.
,
2016
, “
Journal of Natural Gas Science and Engineering Correlations for Estimating Natural Gas Leakage From Above-Ground and Buried Urban Distribution Pipelines
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
185
196
. 10.1016/j.jngse.2016.06.062
34.
Farzaneh-Gord
,
M.
,
Pahlevan-Zadeh
,
M. S.
,
Ebrahimi-Moghadam
,
A.
, and
Rastgar
,
S.
,
2018
, “
Measurement of Methane Emission Into Environment During Natural Gas Purging Process
,”
Environ. Pollut.
,
242
, pp.
2014
2026
. 10.1016/j.envpol.2018.07.027
35.
Arabkoohsar
,
A.
,
Khosravi
,
M.
, and
Alsagri
,
A. S.
,
2019
, “
Effect of Various Twisted-Tape Designs on the Thermal and Environmental Performance of Line-Heaters in City Gate Stations
,”
Int. J. Heat Mass Transf.
,
148
, p.
119123
. 10.1016/j.ijheatmasstransfer.2019.119123
36.
Ebrahimi-Moghadam
,
A.
,
Farzaneh-Gord
,
M.
,
Arabkoohsar
,
A.
, and
Moghadam
,
A. J.
,
2018
, “
CFD Analysis of Natural Gas Emission From Damaged Pipelines: Correlation Development for Leakage Estimation
,”
J. Clean. Prod.
,
199
, pp.
257
271
. 10.1016/j.jclepro.2018.07.127
You do not currently have access to this content.