Abstract

Gas–liquid two-phase flows through long pipelines are one of the most common cases found in chemical, oil, and gas industries. In contrast to the gas/Newtonian liquid systems, the pressure drop has rarely been investigated for two-phase gas/non-Newtonian liquid systems in pipe flows. In this regard, an artificial neural networks (ANNs) model is presented by employing a large number of experimental data to predict the pressure drop for a wide range of operating conditions, pipe diameters, and fluid characteristics. Utilizing a multiple-layer perceptron neural network (MLPNN) model, the predicted pressure drop is in a good agreement with the experimental results. In most cases, the deviation of the predicted pressure drop from the experimental data does not exceed 5%. It is observed that the MLPNN provides more accurate results for horizontal pipelines in comparison with other empirical correlations that are commonly used in industrial applications.

References

1.
Moayedi
,
H.
,
Aghel
,
B.
,
Vaferi
,
B.
,
Foong
,
L. K.
, and
Bui
,
D. T.
,
2020
, “
The Feasibility of Levenberg–Marquardt Algorithm Combined With Imperialist Competitive Computational Method Predicting Drag Reduction in Crude oil Pipelines
,”
J. Pet. Sci. Eng.
,
185
, p.
106634
. 10.1016/j.petrol.2019.106634
2.
Sorgun
,
M.
,
Murat Ozbayoglu
,
A.
, and
Evren Ozbayoglu
,
M.
,
2015
, “
Support Vector Regression and Computational Fluid Dynamics Modeling of Newtonian and Non-Newtonian Fluids in Annulus With Pipe Rotation
,”
ASME J. Energy Resour. Technol.
,
137
(
3
). 10.1115/1.4028694
3.
Ferrari
,
M.
,
Bonzanini
,
A.
, and
Poesio
,
P.
,
2019
, “
A Slug Capturing Method in Unconventional Scenarios: The 5ESCARGOTS Code Applied to non-Newtonian Fluids, High Viscous Oils and Complex Geometries
,”
Petroleum
,
5
(
2
), pp.
171
177
. 10.1016/j.petlm.2018.01.005
4.
Almani
,
S.
,
Haydar
,
A.
,
Blel
,
W.
,
Gadoin
,
E.
, and
Gentric
,
C.
,
2019
, Thin Gap Bubble Column With a non-Newtonian Liquid Phase: Study of the Hydrodynamics and Gas-Liquid Mass Transfer.
5.
Khatib
,
Z.
, and
Richardson
,
J. F.
,
1984
, “
Vertical co-Current Flow of air and Shear Thinning Suspensions of Kaolin
,”
Chem. Eng. Res. Des.
,
62
, pp.
139
154
.
6.
Dziubinski
,
M.
,
Fidos
,
H.
, and
Sosno
,
M.
,
2004
, “
The Flow Pattern map of a two-Phase non-Newtonian Liquid–gas Flow in the Vertical Pipe
,”
Int. J. Multiph. Flow
,
30
(
6
), pp.
551
563
. 10.1016/j.ijmultiphaseflow.2004.04.005
7.
Xu
,
J.
,
Wu
,
Y.
,
Shi
,
Z.
,
Lao
,
L.
, and
Li
,
D.
,
2007
, “
Studies on two-Phase co-Current air/non-Newtonian Shear-Thinning Fluid Flows in Inclined Smooth Pipes
,”
Int. J. Multiph. Flow
,
33
(
9
), pp.
948
969
. 10.1016/j.ijmultiphaseflow.2007.03.008
8.
Jumpholkul
,
C.
,
Asirvatham
,
L. G.
,
Dalkılıç
,
A. S.
,
Mahian
,
O.
,
Ahn
,
H. S.
,
Jerng
,
D.-W.
, and
Wongwises
,
S
,
2020
, “
Experimental Investigation of the Heat Transfer and Pressure Drop Characteristics of SiO2/Water Nanofluids Flowing Through a Circular Tube Equipped With Free Rotating Swirl Generators
,”
Heat Mass Transfer
,
56
, pp.
1613
1626
. 10.1007/s00231-019-02782-z
9.
Aroonrat
,
K.
, and
Wongwises
,
S.
,
2017
, “
Experimental Study on two-Phase Condensation Heat Transfer and Pressure Drop of R-134a Flowing in a Dimpled Tube
,”
Int. J. Heat Mass Transfer
,
106
, pp.
437
448
. 10.1016/j.ijheatmasstransfer.2016.08.046
10.
Sadeghi
,
R.
,
Shadloo
,
M. S.
,
Hopp-Hirschler
,
M.
,
Hadjadj
,
A.
, and
Nieken
,
U.
,
2018
, “
Three-Dimensional Lattice Boltzmann Simulations of High Density Ratio two-Phase Flows in Porous Media
,”
Comput. Math. Appl.
,
75
(
7
), pp.
2445
2465
. 10.1016/j.camwa.2017.12.028
11.
Almasi
,
F.
,
Shadloo
,
M. S.
,
Hadjadj
,
A.
,
Ozbulut
,
M.
,
Tofighi
,
N.
, and
Yildiz
,
M.
,
2019
, “
Numerical Simulations of Multi-Phase Electro-Hydrodynamics Flows Using a Simple Incompressible Smoothed Particle Hydrodynamics Method
,”
Comput. Math. Appl.
, in press.
12.
Bhagwat
,
S. M.
, and
Ghajar
,
A. J.
,
2016
, “
Experimental Investigation of non-Boiling gas-Liquid two Phase Flow in Upward Inclined Pipes
,”
Exp. Therm. Fluid Sci.
,
79
, pp.
301
318
. 10.1016/j.expthermflusci.2016.08.004
13.
Liu
,
Z.
,
Liao
,
R.
,
Luo
,
W.
,
Ribeiro
,
J. X. F.
, and
Su
,
Y.
,
2019
, “
Friction Pressure Drop Model of gas-Liquid two-Phase Flow in an Inclined Pipe with High gas and Liquid Velocities
,”
AIP Adv
,
9
(
8
), p.
85025
. 10.1063/1.5093219
14.
Rahmat
,
A.
,
Tofighi
,
N.
, and
Yildiz
,
M.
,
2017
, “
The Combined Effect of Electric Forces and Confinement Ratio on the Bubble Rising
,”
Int. J. Heat Fluid Flow
,
65
, pp.
352
362
. 10.1016/j.ijheatfluidflow.2017.01.002
15.
Rahmat
,
A.
,
Barigou
,
M.
, and
Alexiadis
,
A.
,
2019
, “
Numerical Simulation of Dissolution of Solid Particles in Fluid Flow Using the SPH Method
,”
Int. J. Numer. Meth. Heat Fluid Flow
,
30
(
1
).
16.
Nwaka
,
N.
,
Wei
,
C.
, and
Chen
,
Y.
,
2020
, “
A Simplified Two-Phase Flow Model for Riser Gas Management With Non-Aqueous Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103001
. 10.1115/1.4046774
17.
Movahedi
,
H.
,
Vasheghani Farahani
,
M.
, and
Masihi
,
M.
,
2020
, “
Development of a Numerical Model for Single-and Two-Phase Flow Simulation in Perforated Porous Media
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042901
. 10.1115/1.4044574
18.
Cheng
,
L.
,
Ribatski
,
G.
, and
Thome
,
J. R.
,
2008
, “
Two-phase Flow Patterns and Flow-Pattern Maps: Fundamentals and Applications
,”
Appl. Mech. Rev.
,
61
(
5
), p.
050802
. 10.1115/1.2955990
19.
Shannak
,
B. A.
,
2008
, “
Frictional Pressure Drop of gas Liquid two-Phase Flow in Pipes
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3277
3284
. 10.1016/j.nucengdes.2008.08.015
20.
Garoosi
,
F.
,
Bagheri
,
G.
, and
Rashidi
,
M. M.
,
2015
, “
Two Phase Simulation of Natural Convection and Mixed Convection of the Nanofluid in a Square Cavity
,”
Powder Technol.
,
275
, pp.
239
256
. 10.1016/j.powtec.2015.02.013
21.
Garoosi
,
F.
, and
Rashidi
,
M. M.
,
2017
, “
Two Phase Flow Simulation of Conjugate Natural Convection of the Nanofluid in a Partitioned Heat Exchanger Containing Several Conducting Obstacles
,”
Int. J. Mech. Sci.
,
130
, pp.
282
306
. 10.1016/j.ijmecsci.2017.06.020
22.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
1984
, “
Prediction of Flow Pattern for the co-Current Flow of gas and non-Newtonian Liquid in Horizontal Pipes
,”
Can. J. Chem. Eng.
,
62
(
4
), pp.
449
454
. 10.1002/cjce.5450620401
23.
Mandhane
,
J. M.
,
Gregory
,
G. A.
, and
Aziz
,
K.
,
1974
, “
A Flow Pattern map for gas—Liquid Flow in Horizontal Pipes
,”
Int. J. Multiph. Flow
,
1
(
4
), pp.
537
553
. 10.1016/0301-9322(74)90006-8
24.
Dziubinski
,
M.
,
1995
, “
A General Correlation for 2-Phase Pressure-Drop in Intermittent Flow of Gas and Non-Newtonian Liquid-Mixtures in a Pipe
,”
Chem. Eng. Res. Des.
,
73
, pp.
528
534
.
25.
Ruiz-Viera
,
M. J.
,
Delgado
,
M. A.
,
Franco
,
J. M.
,
Sánchez
,
M. C.
, and
Gallegos
,
C.
,
2006
, “
On the Drag Reduction for the two-Phase Horizontal Pipe Flow of Highly Viscous non-Newtonian Liquid/air Mixtures: Case of Lubricating Grease
,”
Int. J. Multiph. Flow
,
32
(
2
), pp.
232
247
. 10.1016/j.ijmultiphaseflow.2005.09.003
26.
Heywood
,
N. I.
, and
Charles
,
M. E.
,
1979
, “
The Stratified Flow of gas and non-Newtonian Liquid in Horizontal Pipes
,”
Int. J. Multiph. Flow
,
5
(
5
), pp.
341
352
. 10.1016/0301-9322(79)90012-0
27.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
. 10.1002/aic.690220105
28.
Eisenberg
,
F. G.
, and
Weinberger
,
C. B.
,
1979
, “
Annular Two-Phase Flow of Gases and non-Newtonian Liquids
,”
AIChE J.
,
25
(
2
), pp.
240
246
. 10.1002/aic.690250205
29.
Alizadehdakhel
,
A.
,
Rahimi
,
M.
,
Sanjari
,
J.
, and
Alsairafi
,
A. A.
,
2009
, “
CFD and Artificial Neural Network Modeling of Two-Phase Flow Pressure Drop
,”
Int. Commun. Heat Mass Transfer
,
36
(
8
), pp.
850
856
. 10.1016/j.icheatmasstransfer.2009.05.005
30.
Osman
,
E.-S. A.
,
2004
, “
Artificial Neural Network Models for Identifying Flow Regimes and Predicting Liquid Holdup in Horizontal Multiphase Flow
,”
SPE Prod. Facil.
,
19
(
1
), pp.
33
40
. 10.2118/86910-PA
31.
Xie
,
T.
,
Ghiaasiaan
,
S. M.
, and
Karrila
,
S.
,
2004
, “
Artificial Neural Network Approach for Flow Regime Classification in gas–Liquid–Fiber Flows Based on Frequency Domain Analysis of Pressure Signals
,”
Chem. Eng. Sci.
,
59
(
11
), pp.
2241
2251
. 10.1016/j.ces.2004.02.017
32.
Cai
,
S.
, and
Toral
,
H.
,
1993
, “
Flow Rate Measurement in air-Water Horizontal Pipeline by Neural Networks
,”
Proceedings of the 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan)
, vol.
2
, IEEE, pp.
2013
2016
.
33.
Osman
,
E.-S. A.
, and
Aggour
,
M. A.
,
2002
, “
Artificial Neural Network Model for Accurate Prediction of Pressure Drop in Horizontal and Near-Horizontal-Multiphase Flow
,”
Pet. Sci. Technol.
,
20
(
1–2
), pp.
1
15
. 10.1081/LFT-120002082
34.
Shippen
,
M. E.
, and
Scott
,
S. L.
,
2002
, “
A Neural Network Model for Prediction of Liquid Holdup in Two-Phase Horizontal Flow
,”
SPE Annual Technical Conference Exhibition
,
Society of Petroleum Engineers
.
35.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
, “
Non-Newtonian Fluid Behaviour
,”
Non-Newtonian Flow. Appl. Rheol.
, pp.
1
55
.
36.
Taitel
,
Y.
, and
Barnea
,
D.
,
1990
, “
A Consistent Approach for Calculating Pressure Drop in Inclined Slug Flow
,”
Chem. Eng. Sci.
,
45
(
5
), pp.
1199
1206
. 10.1016/0009-2509(90)87113-7
37.
Xu
,
J.
,
Wu
,
Y.
,
Li
,
H.
,
Guo
,
J.
, and
Chang
,
Y.
,
2009
, “
Study of Drag Reduction by gas Injection for Power-law Fluid Flow in Horizontal Stratified and Slug Flow Regimes
,”
Chem. Eng. J.
,
147
(
2–3
), pp.
235
244
. 10.1016/j.cej.2008.07.006
38.
Xu
,
J.
,
2013
, “
A Simple Correlation for Prediction of the Liquid Slug Holdup in gas/non-Newtonian Fluids: Horizontal to Upward Inclined Flow
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
893
896
. 10.1016/j.expthermflusci.2012.06.017
39.
Komeilibirjandi
,
A.
,
Raffiee
,
A. H.
,
Maleki
,
A.
,
Nazari
,
M. A.
, and
Shadloo
,
M. S.
,
2020
, “
Thermal Conductivity Prediction of Nanofluids Containing CuO Nanoparticles by Using Correlation and Artificial Neural Network
,”
J. Therm. Anal. Calorim.
,
139
, pp.
2679
2689
. 10.1007/s10973-019-08838-w
40.
Zheng
,
Y.
,
Shadloo
,
M. S.
,
Nasiri
,
H.
,
Maleki
,
A.
,
Karimipour
,
A.
, and
Tlili
,
I.
,
2020
, “
Prediction of Viscosity of Biodiesel Blends Using Various Artificial Model and Comparison With Empirical Correlations
,”
Renew. Energy.
,
153
, pp.
1296
1306
. 10.1016/j.renene.2020.02.087
41.
Maleki
,
A.
,
Elahi
,
M.
,
Assad
,
M. E. H.
,
Nazari
,
M. A.
,
Shadloo
,
M. S.
, and
Nabipour
,
N.
,
2020
, “
Thermal Conductivity Modeling of Nanofluids With ZnO Particles by Using Approaches Based on Artificial Neural Network and MARS
,”
J. Therm. Anal. Calorim.
, pp.
1
12
. 10.1007/s10973-020-09373-9
42.
Aghel
,
B.
,
Rezaei
,
A.
, and
Mohadesi
,
M.
,
2019
, “
Modeling and Prediction of Water Quality Parameters Using a Hybrid Particle Swarm Optimization–Neural Fuzzy Approach
,”
Int. J. Environ. Sci. Technol.
,
16
, pp.
4823
4832
. 10.1007/s13762-018-1896-3
43.
Jahanbakhshi
,
R.
, and
Keshavarzi
,
R.
,
2016
, “
Intelligent Classifier Approach for Prediction and Sensitivity Analysis of Differential Pipe Sticking: a Comparative Study
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052904
. 10.1115/1.4032831
44.
Moayedi
,
H.
,
Aghel
,
B.
,
Foong
,
L. K.
, and
Bui
,
D. T.
,
2020
, “
Feature Validity During Machine Learning Paradigms for Predicting Biodiesel Purity
,”
Fuel
,
262
, pp.
116498
.
45.
Ghritlahre
,
H. K.
, and
Prasad
,
R. K.
,
2018
, “
Investigation of Thermal Performance of Unidirectional Flow Porous bed Solar air Heater Using MLP, GRNN, and RBF Models of ANN Technique
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
226
235
. 10.1016/j.tsep.2018.04.006
46.
Wadkar
,
D.
, and
Kote
,
A.
,
2017
, “
Prediction of Residual Chlorine in a Water Treatment Plant Using Generalized Regression Neural Network
,”
Int. J. Civ. Eng. Technol.
,
8
(
8
), pp.
1264
1270
.
47.
Ghosh
,
T.
,
Martinsen
,
K.
, and
Dan
,
P. K.
,
2019
, “Data-Driven Beetle Antennae Search Algorithm for Electrical Power Modeling of a Combined Cycle Power Plant,”
World Congr. Glob. Optim.
,
H. A.
Thi
,
H. M.
Le
, and
T. P.
Dinh
, eds.,
Springer
,
New York
, pp.
906
915
.
48.
Farooqi
,
S. I.
, and
Richardson
,
J. F.
,
1982
, “
Horizontal Flow of air and Liquid (Newtonian and non-Newtonian) in a Smooth Pipe. Part II: Average Pressure Drop
,”
Trans. IChemE.
,
60
, pp.
323
333
.
49.
Chhabra
,
R. P.
,
Richardson
,
J. F.
,
Farooqi
,
S. I.
, and
Wardle
,
A. P.
,
1983
, “
Co-current Flow of air and Shear Thinning Suspensions in Pipes of Large Diameter
,”
Chem. Eng. Res. Des.
,
61
, pp.
56
61
.
50.
Wu
,
B.
,
2010
, “
CFD Simulation of gas and non-Newtonian Fluid two-Phase Flow in Anaerobic Digesters
,”
Water Res.
,
44
(
13
), pp.
3861
3874
. 10.1016/j.watres.2010.04.043
51.
Mowla
,
D.
, and
Naderi
,
A.
,
2006
, “
Experimental Study of Drag Reduction by a Polymeric Additive in Slug two-Phase Flow of Crude oil and air in Horizontal Pipes
,”
Chem. Eng. Sci.
,
61
(
5
), pp.
1549
1554
. 10.1016/j.ces.2005.09.006
52.
Li
,
H.
,
Wong
,
T. N.
,
Skote
,
M.
, and
Duan
,
F.
,
2014
, “
Non-Newtonian Two-Phase Stratified Flow With Curved Interface Through Horizontal and Inclined Pipes
,”
Int. J. Heat Mass Transfer
,
74
, pp.
113
120
. 10.1016/j.ijheatmasstransfer.2014.02.052
53.
Firouzi
,
M.
, and
Hashemabadi
,
S. H.
,
2009
, “
Exact Solution of two Phase Stratified Flow Through the Pipes for non-Newtonian Herschel–Bulkley Fluids
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
768
775
. 10.1016/j.icheatmasstransfer.2009.03.018
54.
Vaferi
,
B.
,
Samimi
,
F.
,
Pakgohar
,
E.
, and
Mowla
,
D.
,
2014
, “
Artificial Neural Network Approach for Prediction of Thermal Behavior of Nanofluids Flowing Through Circular Tubes
,”
Powder Technol.
,
267
, pp.
1
10
. 10.1016/j.powtec.2014.06.062
55.
Demuth
,
H. B.
,
Beale
,
M. H.
,
De Jess
,
O.
, and
Hagan
,
M. T.
,
2014
,
Neural Network Design
,
Martin Hagan
,
Oklahoma State University, United States
.
56.
Xu
,
J.
,
Gao
,
M.
, and
Zhang
,
J.
,
2014
, “
Pressure Drop Models for Gas/Non-Newtonian Power-Law Fluids Flow in Horizontal Pipes
,”
Chem. Eng. Technol.
,
37
(
4
), pp.
717
722
. 10.1002/ceat.201300615
You do not currently have access to this content.