Abstract

This paper investigates heat and mass transport around a cylinder featuring non-isothermal homogenous and heterogeneous chemical reactions in a surrounding porous medium. The system is subject to an impinging flow, while local thermal non-equilibrium, non-linear thermal radiation within the porous region, and the temperature dependency of the reaction rates are considered. Further, non-equilibrium thermodynamics, including Soret and Dufour effects are taken into account. The governing equations are numerically solved using a finite-difference method after reducing them to a system of non-linear ordinary differential equations. Since the current problem contains a large number of parameters with complex interconnections, low-cost models such as those based on artificial intelligence are desirable for the conduction of extensive parametric studies. Therefore, the simulations are used to train an artificial neural network. Comparing various algorithms of the artificial neural network, the radial basic function network is selected. The results show that variations in radiative heat transfer as well as those in Soret and Dufour effects can significantly change the heat and mass transfer responses. Within the investigated parametric range, it is found that the diffusion mechanism is dominantly responsible for heat and mass transfer. Importantly, it is noted that the developed predictor algorithm offers a considerable saving of the computational burden.

References

1.
Mahapatra
,
T. R.
, and
Gupta
,
A. S.
,
2003
, “
Stagnation-Point Flow Towards a Stretching Surface
,”
Can. J. Chem. Eng.
,
81
(
2
), pp.
258
263
. 10.1002/cjce.5450810210
2.
Dutta
,
B. K.
,
Roy
,
P.
, and
Gupta
,
A. S.
,
1985
, “
Temperature Field in Flow Over a Stretching Sheet With Uniform Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
89
94
. 10.1016/0735-1933(85)90010-7
3.
Wang
,
C. Y.
,
1984
, “
The Three-Dimensional Flow Due to a Stretching Flat Surface
,”
Phys. Fluids
,
27
(
8
), pp.
1915
1917
. 10.1063/1.864868
4.
Chiam
,
T. C.
,
1994
, “
Stagnation-Point Flow Towards a Stretching Plate
,”
J. Phys. Soc. Jpn.
,
63
(
6
), pp.
2443
2444
. 10.1143/JPSJ.63.2443
5.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
(Vol.
3
),
McGraw-Hill
,
New York
.
6.
Alizadeh
,
R.
,
Rahimi
,
A. B.
,
Karimi
,
N.
, and
Alizadeh
,
A.
,
2017
, “
On the Hydrodynamics and Heat Convection of an Impinging External Flow Upon a Cylinder With Transpiration and Embedded in a Porous Medium
,”
Transp. Porous Media
,
120
(
3
), pp.
579
604
. 10.1007/s11242-017-0942-9
7.
Brimmo
,
A. T.
, and
Qasaimeh
,
M. A.
,
2017
, “
Stagnation Point Flows in Analytical Chemistry and Life Sciences
,”
RSC Adv.
,
7
(
81
), pp.
51206
51232
. 10.1039/C7RA11155J
8.
Kordonski
,
W. I.
, and
Jacobs
,
S. D.
,
1996
, “
Magnetorheological Finishing
,”
Int. J. Mod. Phys. B
,
10
(
23–24
), pp.
2837
2848
. 10.1142/S0217979296001288
9.
Li
,
M.
,
Wu
,
Y.
,
Tian
,
Y.
, and
Zhai
,
Y.
,
2007
, “
Non-Thermal Equilibrium Model of the Coupled Heat and Mass Transfer in Strong Endothermic Chemical Reaction System of Porous Media
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2936
2943
. 10.1016/j.ijheatmasstransfer.2006.12.013
10.
Ting
,
T. W.
,
Hung
,
Y. M.
, and
Guo
,
N.
,
2015
, “
Entropy Generation of Viscous Dissipative Nanofluid Flow in Thermal Non-Equilibrium Porous Media Embedded in Microchannels
,”
Int. J. Heat Mass Transfer
,
81
, pp.
862
877
. 10.1016/j.ijheatmasstransfer.2014.11.006
11.
Ting
,
T. W.
,
Hung
,
Y. M.
, and
Guo
,
N.
,
2015
, “
Entropy Generation of Viscous Dissipative Nanofluid Convection in Asymmetrically Heated Porous Microchannels With Solid-Phase Heat Generation
,”
Energy Convers. Manage.
,
105
, pp.
731
745
. 10.1016/j.enconman.2015.08.022
12.
Alizadeh
,
R.
,
Karimi
,
N.
,
Arjmandzadeh
,
R.
, and
Mehdizadeh
,
A.
,
2019
, “
Mixed Convection and Thermodynamic Irreversibilities in MHD Nanofluid Stagnation-Point Flows Over a Cylinder Embedded in Porous Media
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
489
506
. 10.1007/s10973-018-7071-8
13.
Pletcher
,
D.
, and
Walsh
,
F. C.
,
2012
,
Industrial Electrochemistry
,
Springer Science & Business Media
,
Berlin
.
14.
Yadav
,
D.
, and
Banerjee
,
R.
,
2016
, “
A Review of Solar Thermochemical Processes
,”
Renew. Sust. Energy Rev.
,
54
, pp.
497
532
. 10.1016/j.rser.2015.10.026
15.
Chein
,
R. Y.
,
Chen
,
L. C.
,
Chen
,
Y. C.
, and
Chung
,
J. N.
,
2009
, “
Heat Transfer Effects on the Methanol-Steam Reforming With Partially Filled Catalyst Layers
,”
Int. J. Hydrogen Energy
,
34
(
13
), pp.
5398
5408
. 10.1016/j.ijhydene.2009.04.049
16.
Chein
,
R. Y.
,
Chen
,
Y. C.
, and
Chung
,
J. N.
,
2012
, “
Thermal Resistance Effect on Methanol-Steam Reforming Performance in Micro-Scale Reformers
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
250
262
. 10.1016/j.ijhydene.2011.09.070
17.
Nield
,
D. A.
,
Junqueira
,
S. L. M.
, and
Lage
,
J. L.
,
1996
, “
Forced Convection in a Fluid-Saturated Porous-Medium Channel With Isothermal or Isoflux Boundaries
,”
J. Fluid Mech.
,
322
, pp.
201
214
. 10.1017/S0022112096002765
18.
Karimi
,
N.
,
Agbo
,
D.
,
Khan
,
A. T.
, and
Younger
,
P. L.
,
2015
, “
On the Effects of Exothermicity and Endothermicity Upon the Temperature Fields in a Partially-Filled Porous Channel
,”
Int. J. Therm. Sci.
,
96
, pp.
128
148
. 10.1016/j.ijthermalsci.2015.05.002
19.
Torabi
,
M.
,
Karimi
,
N.
,
Zhang
,
K.
, and
Peterson
,
G. P.
,
2016
, “
Generation of Entropy and Forced Convection of Heat in a Conduit Partially Filled With Porous Media–Local Thermal Non-Equilibrium and Exothermicity Effects
,”
Appl. Therm. Eng.
,
106
, pp.
518
536
. 10.1016/j.applthermaleng.2016.06.036
20.
Guthrie
,
D. G.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2019
, “
Combined Heat and Mass Transfer Analyses in Catalytic Microreactors Partially Filled With Porous Material—The Influences of Nanofluid and Different Porous-Fluid Interface Models
,”
Int. J. Therm. Sci.
,
140
, pp.
96
113
. 10.1016/j.ijthermalsci.2019.02.037
21.
Chao
,
B. H.
,
Wang
,
H.
, and
Cheng
,
P.
,
1996
, “
Stagnation Point Flow of a Chemically Reactive Fluid in a Catalytic Porous Bed
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
3003
3019
. 10.1016/0017-9310(95)00363-0
22.
Sheri
,
S.
, and
Shamshuddin
,
M. D.
,
2018
, “
Finite Element Analysis on Transient Magnetohydrodynamic (MHD) Free Convective Chemically Reacting Micropolar Fluid Flow Past a Vertical Porous Plate With Hall Current and Viscous Dissipation
,”
Propuls. Power Res.
,
7
(
4
), pp.
353
365
. 10.1016/j.jppr.2018.11.003
23.
Tlili
,
I.
,
Khan
,
W. A.
, and
Khan
,
I.
,
2018
, “
Multiple Slips Effects on MHD SA-Al2O3 and SA-Cu Non-Newtonian Nanofluids Flow Over a Stretching Cylinder in Porous Medium With Radiation and Chemical Reaction
,”
Results Phys.
,
8
, pp.
213
222
. 10.1016/j.rinp.2017.12.013
24.
Pal
,
D.
, and
Biswas
,
S.
,
2018
, “
Magnetohydrodynamic Convective-Radiative Oscillatory Flow of a Chemically Reactive Micropolar Fluid in a Porous Medium
,”
Propuls. Power Res.
,
7
(
2
), pp.
158
170
. 10.1016/j.jppr.2018.05.004
25.
Khan
,
M.
,
El Shafey
,
A. M.
,
Salahuddin
,
T.
, and
Khan
,
F.
,
2020
, “
Chemically Homann Stagnation Point Flow of Carreau Fluid
,”
Phys. A: Statistical Mech. Appl.
,
551
, p.
124066
. 10.1016/j.physa.2019.124066
26.
Khan
,
M.
,
Salahuddin
,
T.
,
Malik
,
M. Y.
,
Tanveer
,
A.
,
Hussain
,
A.
, and
Alqahtani
,
A. S.
,
2020
, “
3D Axisymmetric Carreau Nanofluid Flow Near the Homann Stagnation Region Along With Chemical Reaction: Application Fourier’s and Fick’s Laws
,”
Math Comput. Simul.
,
170
, pp.
221
235
. 10.1016/j.matcom.2019.10.019
27.
Alizadeh
,
R.
,
Karimi
,
N.
,
Mehdizadeh
,
A.
, and
Nourbakhsh
,
A.
,
2019
, “
Analysis of Transport From Cylindrical Surfaces Subject to Catalytic Reactions and Non-Uniform Impinging Flows in Porous Media
,”
J. Therm. Anal. Calorim.
,
138
(
1
), pp.
659
678
. 10.1007/s10973-019-08120-z
28.
Alizadeh
,
R.
,
Karimi
,
N.
, and
Nourbakhsh
,
A.
,
2020
, “
Effects of Radiation and Magnetic Field on Mixed Convection Stagnation-Point Flow Over a Cylinder in a Porous Medium Under Local Thermal Non-Equilibrium
,”
J. Therm. Anal. Calorim.
,
140
, pp.
1371
1391
. 10.1007/s10973-019-08415-1
29.
Mohanraj
,
M.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2012
, “
Applications of Artificial Neural Networks for Refrigeration, Air-Conditioning and Heat Pump Systems—A Review
,”
Renew. Sust. Energy Rev.
,
16
(
2
), pp.
1340
1358
. 10.1016/j.rser.2011.10.015
30.
Ricardo
,
R. M.
,
Manuel
,
H. L. J.
,
Martín
,
D. G. H.
, and
Arturo
,
P. V.
,
2014
, “
Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units
,”
Ing., Invest. Technol.
,
15
(
1
), pp.
93
101
. 10.1016/s1405-7743(15)30009-3
31.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
. 10.1146/annurev-fluid-010719-060214
32.
Bahrami
,
B.
,
Mohsenpour
,
S.
,
Noghabi
,
H. R. S.
,
Hemmati
,
N.
, and
Tabzar
,
A.
,
2019
, “
Estimation of Flow Rates of Individual Phases in an Oil-Gas-Water Multiphase Flow System Using Neural Network Approach and Pressure Signal Analysis
,”
Flow Meas. Instrum.
,
66
, pp.
28
36
. 10.1016/j.flowmeasinst.2019.01.018
33.
Faller
,
W. E.
, and
Schreck
,
S. J.
,
1996
, “
Neural Networks: Applications and Opportunities in Aeronautics
,”
Prog. Aeronaut. Sci.
,
32
(
5
), pp.
433
456
. 10.1016/0376-0421(95)00011-9
34.
Milano
,
M.
, and
Koumoutsakos
,
P.
,
2002
, “
Neural Network Modelling for Near Wall Turbulent Flow
,”
J. Comput. Phys.
,
182
(
1
), pp.
1
26
. 10.1006/jcph.2002.7146
35.
Ahmad
,
I.
,
Zahid
,
H.
,
Ahmad
,
F.
,
Raja
,
M. A. Z.
, and
Baleanu
,
D.
,
2019
, “
Design of Computational Intelligent Procedure for Thermal Analysis of Porous Fin Model
,”
Chin. J. Phys.
,
59
, pp.
641
655
. 10.1016/j.cjph.2019.04.015
36.
Mohammadi
,
M. H.
,
Abbasi
,
H. R.
,
Yavarinasab
,
A.
, and
Pourrahmani
,
H.
,
2020
, “
Thermal Optimization of Shell and Tube Heat Exchanger Using Porous Baffles
,”
Appl. Therm. Eng.
,
170
, p.
115005
. 10.1016/j.applthermaleng.2020.115005
37.
Liu
,
S.
,
Zolfaghari
,
A.
,
Sattarin
,
S.
,
Dahaghi
,
A. K.
, and
Negahban
,
S.
,
2019
, “
Application of Neural Networks in Multiphase Flow Through Porous Media: Predicting Capillary Pressure and Relative Permeability Curves
,”
J. Pet. Sci. Eng.
,
180
, pp.
445
455
. 10.1016/j.petrol.2019.05.041
38.
Alanis
,
A. Y.
,
Arana-Daniel
,
N.
, and
Lopez-Franco
,
C.
,
2019
,
Artificial Neural Networks for Engineering Applications
,
Academic Press
,
London
.
39.
Alizadeh
,
R.
,
Gomari
,
S. R.
,
Alizadeh
,
A.
,
Karimi
,
N.
, and
Li
,
L. K.
,
2019
, “
Combined Heat and Mass Transfer and Thermodynamic Irreversibilities in the Stagnation-Point Flow of Casson Rheological Fluid Over a Cylinder With Catalytic Reactions and Inside a Porous Medium Under Local Thermal Nonequilibrium
,”
Comput. Math Appl
. 10.1016/j.camwa.2019.10.021
40.
Hayat
,
T.
,
Waqas
,
M.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2016
, “
A Model of Solar Radiation and Joule Heating in Magnetohydrodynamic (MHD) Convective Flow of Thixotropic Nanofluid
,”
J. Mol. Liq.
,
215
, pp.
704
710
. 10.1016/j.molliq.2016.01.005
41.
Abbas
,
Z.
,
Sheikh
,
M.
, and
Motsa
,
S. S.
,
2016
, “
Numerical Solution of Binary Chemical Reaction on Stagnation Point Flow of Casson Fluid Over a Stretching/Shrinking Sheet With Thermal Radiation
,”
Energy
,
95
, pp.
12
20
. 10.1016/j.energy.2015.11.039
42.
Hunt
,
G.
,
Karimi
,
N.
,
Yadollahi
,
B.
, and
Torabi
,
M.
,
2019
, “
The Effects of Exothermic Catalytic Reactions Upon Combined Transport of Heat and Mass in Porous Microreactors
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1227
1249
. 10.1016/j.ijheatmasstransfer.2019.02.015
43.
Bhattacharyya
,
K.
,
Mukhopadhyay
,
S.
,
Layek
,
G. C.
, and
Pop
,
I.
,
2012
, “
Effects of Thermal Radiation on Micropolar Fluid Flow and Heat Transfer Over a Porous Shrinking Sheet
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
2945
2952
. 10.1016/j.ijheatmasstransfer.2012.01.051
44.
Torabi
,
M.
, and
Aziz
,
A.
,
2012
, “
Entropy Generation in a Hollow Cylinder With Temperature Dependent Thermal Conductivity and Internal Heat Generation With Convective–Radiative Surface Cooling
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1487
1495
. 10.1016/j.icheatmasstransfer.2012.10.009
45.
Hussain
,
S. T.
,
Haq
,
R. U.
,
Noor
,
N. F. M.
, and
Nadeem
,
S.
,
2017
, “
Non-Linear Radiation Effects in Mixed Convection Stagnation Point Flow Along a Vertically Stretching Surface
,”
Int. J. Chem. React. Eng.
,
15
(
1
), pp.
11
20
. 10.1515/ijcre-2015-0177
46.
Wang
,
C. Y.
,
1974
, “
Axisymmetric Stagnation Flow on a Cylinder
,”
Q. Appl. Math.
,
32
(
2
), pp.
207
213
. 10.1090/qam/99683
47.
Gorla
,
R. S. R.
,
1993
, “
Mixed Convection in an Axisymmetric Stagnation Flow on a Vertical Cylinder
,”
Oesterr. Ing.-Arch.
,
99
(
1–4
), pp.
113
123
.
48.
Thomas
,
J. W.
,
2013
,
Numerical Partial Differential Equations: Finite Difference Methods
, Vol.
22
,
Springer Science & Business Media
,
Berlin
.
49.
Ahmadi
,
M. H.
,
Ghazvini
,
M.
,
Maddah
,
H.
,
Kahani
,
M.
,
Pourfarhang
,
S.
,
Pourfarhang
,
A.
, and
Heris
,
S. Z.
,
2020
, “
Prediction of the Pressure Drop for CuO/(Ethylene Glycol-Water) Nanofluid Flows in the Car Radiator by Means of Artificial Neural Networks Analysis Integrated With Genetic Algorithm
,”
Phys. A: Statistical Mech. Appl.
,
546
, p.
124008
. 10.1016/j.physa.2019.124008
50.
Broomhead
,
D. S.
, and
Lowe
,
D.
,
1988
,
Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks (No. RSRE-MEMO-4148). Royal Signals and Radar Establishment, Malvern, UK
.
51.
Haykin
,
S.
,
2010
,
Neural Networks and Learning Machines, 3/E.
,
Pearson Education India
,
Boston, MA
.
52.
Peng
,
H.
,
Long
,
F.
, and
Ding
,
C.
,
2005
, “
Feature Selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
(
8
), pp.
1226
1238
. 10.1109/TPAMI.2005.159
53.
Drucker
,
H.
,
Burges
,
C. J.
,
Kaufman
,
L.
,
Smola
,
A. J.
, and
Vapnik
,
V.
,
1997
, “
Support Vector Regression Machines
,”
Adv. Neural Inf. Process Syst.
, pp.
155
161
.
54.
Strutz
,
T.
,
2010
,
Data Fitting and Uncertainty: A Practical Introduction to Weighted Least Squares and Beyond
,
Vieweg
,
Braunschweig
.
55.
Hunt
,
G.
,
Karimi
,
N.
, and
Torabi
,
M.
,
2018
, “
Two-Dimensional Analytical Investigation of Coupled Heat and Mass Transfer and Entropy Generation in a Porous, Catalytic Microreactor
,”
Int. J. Heat Mass Transfer
,
119
, pp.
372
391
. 10.1016/j.ijheatmasstransfer.2017.11.118
56.
Dickson
,
C.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2016
, “
First and Second Law Analysis of Nanofluid Convection Through a Porous Channel—The Effects of Partial Filling and Internal Heat Sources
,”
J. Appl. Therm. Eng.
,
103
, pp.
459
480
. 10.1016/j.applthermaleng.2016.04.095
57.
Torabi
,
M.
,
Dickson
,
C.
, and
Karimi
,
N.
,
2016
, “
Theoretical Investigation of Entropy Generation and Heat Transfer by Forced Convection of Copper–Water Nanofluid in a Porous Channel—Local Thermal Non-Equilibrium and Partial Filling Effects
,”
Powder Technol.
,
301
, pp.
234
254
. 10.1016/j.powtec.2016.06.017
58.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Stream Wise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
59.
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
. 10.1115/1.4041929
60.
Zhao
,
W.
,
Zhang
,
Y.
,
Xu
,
B.
,
Li
,
P.
,
Wang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082003
. 10.1115/1.4039775
61.
Papi
,
A.
,
Mohebbi
,
A.
, and
Ehsan Eshraghi
,
S.
,
2019
, “
Numerical Simulation of the Impact of Natural Fracture on Fluid Composition Variation Through a Porous Medium
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042901
. 10.1115/1.4041839
You do not currently have access to this content.