Abstract

A novel air handling unit (AHU) aimed at reducing energy consumption was introduced in this study. In the proposed novel AHU, the heating coil is completely removed, and therefore, no heating coil energy demand is needed. The novel AHU used primary energy recovery as well as secondary one to utilize the return air energy and exergy. Through the first energy recovery unit, the return air exergy was recovered, while in the secondary heat exchanger, return air energy was recycled. Results showed that using the novel AHU leads to a reduction in energy consumption as well as the exergy losses. Three climate zones of A, B, and C were selected to assess the novel AHU performance. From the first law viewpoint, at zone B, using novel AHU has priority over other zones, while in the second law analysis, utilizing the novel AHU at zones B and C is more beneficial. Based on the first law analysis, owing to using novel AHU, energy consumption reduced up to 55.2% at Penang climate zone. Second law analysis revealed that utilizing the novel AHU decreased the irreversibility up to 51.4% in the Vancouver climate region.

References

1.
Longo
,
S.
,
Montana
,
F.
, and
Sanseverino
,
E. R.
,
2019
, “
A Review on Optimization and Cost-Optimal Methodologies in Low-Energy Buildings Design and Environmental Considerations
,”
Sustain. Cities. Soc.
,
45
, pp.
87
104
. 10.1016/j.scs.2018.11.027
2.
Akinyemi
,
O. S.
,
Jiang
,
L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
. 10.1115/1.4040202
3.
Momeni
,
H.
, and
Keshtkar
,
M. M.
,
2020
, “
Thermodynamic, Economic, and Environmental Comparison Between the Direct and Indirect CO2 Refrigeration Cycle With Conventional Indirect NH3 Cycle With Considering a Heat Recovery System in an Ice Rink: A Case Study
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012002
. 10.1115/1.4044270
4.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122005
. 10.1115/1.4041093
5.
Zeng
,
S.
,
Liu
,
Y.
,
Liu
,
C.
, and
Nan
,
X.
,
2017
, “
A Review of Renewable Energy Investment in the BRICS Countries: History, Models, Problems and Solutions
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
860
872
. 10.1016/j.rser.2017.03.016
6.
Zhang
,
L.
,
Zha
,
X.
,
Song
,
X.
, and
Zhang
,
X.
,
2019
, “
Optimization Analysis of a Hybrid Fresh air Handling System Based on Evaporative Cooling and Condensation Dehumidification
,”
Energy Convers. Manage.
,
180
, pp.
83
93
. 10.1016/j.enconman.2018.10.100
7.
Eades
,
W. G.
,
2018
, “
Energy and Water Recovery Using air-Handling Unit Condensate From Laboratory HVAC Systems
,”
Sustain. Cities. Soc.
,
42
, pp.
162
175
. 10.1016/j.scs.2018.07.006
8.
Homod
,
R. Z.
,
2014
, “
Assessment Regarding Energy Saving and Decoupling for Different AHU (air Handling Unit) and Control Strategies in the hot-Humid Climatic Region of Iraq
,”
Energy
,
74
, pp.
762
774
. 10.1016/j.energy.2014.07.047
9.
Kusiak
,
A.
,
Zeng
,
Y.
, and
Xu
,
G.
,
2013
, “
Minimizing Energy Consumption of an air Handling Unit With a Computational Intelligence Approach
,”
Energ. Buildings
,
60
, pp.
355
363
. 10.1016/j.enbuild.2013.02.006
10.
Kusiak
,
A.
, and
Xu
,
G.
,
2012
, “
Modeling and Optimization of HVAC Systems Using a Dynamic Neural Network
,”
Energy
,
42
(
1
), pp.
241
250
. 10.1016/j.energy.2012.03.063
11.
Seara
,
J. F.
,
Diz
,
R.
,
Uhia
,
F. J.
,
Dopazo
,
A.
, and
Ferro
,
J. M.
,
2011
, “
Experimental Analysis of an air-to-air Heat Recovery Unit for Balanced Ventilation Systems in Residential Buildings
,”
Energy Convers. Manage.
,
52
(
1
), pp.
635
640
. 10.1016/j.enconman.2010.07.040
12.
Bahmani
,
M. H.
,
Sheikhzadeh
,
G.
,
Zarringhalam
,
M.
,
Akbari
,
O. A.
,
Alrashed
,
A. A.
,
Shabani
,
G. A. S.
, and
Goodarzi
,
M.
,
2018
, “
Investigation of Turbulent Heat Transfer and Nanofluid Flow in a Double Pipe Heat Exchanger
,”
Adv. Powder Technol.
,
29
(
2
), pp.
273
282
.
13.
Mahdisoozani
,
H.
,
Mohsenizadeh
,
M.
,
Bahiraei
,
M.
,
Kasaeian
,
A.
,
Daneshvar
,
A.
,
Goodarzi
,
M.
, and
Safaei
,
M. R.
,
2019
, “
Performance Enhancement of Internal Combustion Engines Through Vibration Control: State of the art and Challenges
,”
Appl. Sci.
,
9
(
3
), p.
406
. 10.3390/app9030406
14.
Hooman
,
K.
,
Tamayol
,
A.
,
Dahari
,
M.
,
Safaei
,
M. R.
,
Togun
,
H.
, and
Sadri
,
R.
,
2014
, “
A Theoretical Model to Predict gas Permeability for Slip Flow Through a Porous Medium
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
71
76
. 10.1016/j.applthermaleng.2014.04.071
15.
Rahmanian
,
B.
,
Safaei
,
M. R.
,
Kazi
,
S. N.
,
Ahmadi
,
G.
,
Oztop
,
H. F.
, and
Vafai
,
K.
,
2014
, “
Investigation of Pollutant Reduction by Simulation of Turbulent non-Premixed Pulverized Coal Combustion
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1222
1235
. 10.1016/j.applthermaleng.2014.09.016
16.
Seifi
,
A. R.
,
Akbari
,
O. A.
,
Alrashed
,
A. A.
,
Afshary
,
F.
,
Shabani
,
G. A. S.
,
Seifi
,
R.
,
Goodarzi
,
M.
, and
Pourfattah
,
F.
,
2018
, “
Effects of External Wind Breakers of Heller dry Cooling System in Power Plants
,”
Appl. Therm. Eng.
,
129
, pp.
1124
1134
. 10.1016/j.applthermaleng.2017.10.118
17.
Hosseini
,
S. M.
,
Safaei
,
M. R.
,
Goodarzi
,
M.
,
Alrashed
,
A. A.
, and
Nguyen
,
T. K.
,
2017
, “
New Temperature, Interfacial Shell Dependent Dimensionless Model for Thermal Conductivity of Nanofluids
,”
Int. J. Heat Mass Transfer
,
114
, pp.
207
210
.
18.
Maleki
,
H.
,
Safaei
,
M. R.
,
Alrashed
,
A. A.
, and
Kasaeian
,
A.
,
2019
, “
Flow and Heat Transfer in non-Newtonian Nanofluids Over Porous Surfaces
,”
J. Therm. Anal. Calorim.
,
135
(
3
), pp.
1655
1666
. 10.1007/s10973-018-7277-9
19.
Hosseini
,
S. M.
,
Safaei
,
M. R.
,
Estellé
,
P.
, and
Jafarnia
,
S. H.
,
2020
, “
Heat Transfer of Water-Based Carbon Nanotube Nanofluids in the Shell and Tube Cooling Heat Exchangers of the Gasoline Product of the Residue Fluid Catalytic Cracking Unit
,”
J. Therm. Anal. Calorim.
,
140
(
1
), pp.
351
362
. 10.1007/s10973-019-08813-5
20.
Shadlaghani
,
A.
,
Farzaneh
,
M.
,
Shahabadi
,
M.
,
Tavakoli
,
M. R.
,
Safaei
,
M. R.
, and
Mazinani
,
I.
,
2019
, “
Numerical Investigation of Serrated Fins on Natural Convection From Concentric and Eccentric Annuli With Different Cross Sections
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1429
1442
. 10.1007/s10973-018-7542-y
21.
Shojaeizadeh
,
A.
,
Safaei
,
M. R.
,
Alrashed
,
A. A.
,
Ghodsian
,
M.
,
Geza
,
M.
, and
Abbassi
,
M. A.
,
2018
, “
Bed Roughness Effects on Characteristics of Turbulent Confined Wall Jets
,”
Measurement
,
122
, pp.
325
338
. 10.1016/j.measurement.2018.02.033
22.
Almasi
,
F.
,
Shadloo
,
M. S.
,
Hadjadj
,
A.
,
Ozbulut
,
M.
,
Tofighi
,
N.
, and
Yildiz
,
M.
,
2019
, “
Numerical Simulations of Multi-Phase Electro-Hydrodynamics Flows Using a Simple Incompressible Smoothed Particle Hydrodynamics Method
,”
Comput. Math. Appl.
23.
Hopp-Hirschler
,
M.
,
Shadloo
,
M. S.
, and
Nieken
,
U.
,
2018
, “
A Smoothed Particle Hydrodynamics Approach for Thermo-Capillary Flows
,”
Comput. Fluids
,
176
, pp.
1
19
. 10.1016/j.compfluid.2018.09.010
24.
Sadeghi
,
R.
, and
Shadloo
,
M. S.
,
2017
, “
Three-dimensional Numerical Investigation of Film Boiling by the Lattice Boltzmann Method
,”
Numer. Heat Transfer, Part A
,
71
(
5
), pp.
560
574
. 10.1080/10407782.2016.1277936
25.
Safdari Shadloo
,
M.
,
2019
, “
Numerical Simulation of Compressible Flows by Lattice Boltzmann Method
,”
Numer. Heat Transfer, Part A
,
75
(
3
), pp.
167
182
. 10.1080/10407782.2019.1580053
26.
Shadloo
,
M. S.
, and
Hadjadj
,
A.
,
2017
, “
Laminar-turbulent Transition in Supersonic Boundary Layers with Surface Heat Transfer: a Numerical Study
,”
Numer. Heat Transfer, Part A
,
72
(
1
), pp.
40
53
. 10.1080/10407782.2017.1353380
27.
Shenoy
,
D. V.
,
Shadloo
,
M. S.
,
Peixinho
,
J.
, and
Hadjadj
,
A.
,
2019
, “
Direct Numerical Simulations of Laminar and Transitional Flows in Diverging Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
.
28.
Abdollahzadeh Jamalabadi
,
M. Y.
,
Alamian
,
R.
,
Yan
,
W. M.
,
Li
,
L. K.
,
Leveneur
,
S.
, and
Safdari Shadloo
,
M.
,
2019
, “
Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers
,”
Symmetry
,
11
(
11
), p.
1353
. 10.3390/sym11111353
29.
Abdollahzadeh Jamalabadi
,
M. Y.
,
Ghasemi
,
M.
,
Alamian
,
R.
,
Wongwises
,
S.
,
Afrand
,
M.
, and
Shadloo
,
M. S.
,
2019
, “
Modeling of Subcooled Flow Boiling With Nanoparticles Under the Influence of a Magnetic Field
,”
Symmetry
,
11
(
10
), p.
1275
. 10.3390/sym11101275
30.
Komeilibirjandi
,
A.
,
Raffiee
,
A. H.
,
Maleki
,
A.
,
Nazari
,
M. A.
, and
Shadloo
,
M. S.
,
2020
, “
Thermal Conductivity Prediction of Nanofluids Containing CuO Nanoparticles by Using Correlation and Artificial Neural Network
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2679
2689
. 10.1007/s10973-019-08838-w
31.
Yaïci
,
W.
,
Ghorab
,
M.
, and
Entchev
,
E.
,
2013
, “
Numerical Analysis of Heat and Energy Recovery Ventilators Performance Based on CFD for Detailed Design
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
770
780
. 10.1016/j.applthermaleng.2012.10.003
32.
Liu
,
P.
,
Alonso
,
M. J.
,
Mathisen
,
H. M.
, and
Simonson
,
C.
,
2017
, “
Energy Transfer and Energy Saving Potentials of air-to-air Membrane Energy Exchanger for Ventilation in Cold Climates
,”
Energ. Buildings
,
135
, pp.
95
108
. 10.1016/j.enbuild.2016.11.047
33.
Sala-Lizarraga
,
J. M.
, and
Picallo-Perez
,
A.
,
2019
,
Exergy Analysis and Thermoeconomics of Buildings: Design and Analysis for Sustainable Energy Systems
,
Butterworth-Heinemann
.
34.
Shanazari
,
E.
, and
Kalbasi
,
R.
,
2018
, “
Improving Performance of an Inverted Absorber Multi-Effect Solar Still by Applying Exergy Analysis
,”
Appl. Therm. Eng.
,
143
, pp.
1
10
. 10.1016/j.applthermaleng.2018.07.021
35.
Kalbasi
,
R.
,
Izadi
,
F.
, and
Talebizadehsardari
,
P.
,
2020
, “
Improving Performance of AHU Using Exhaust air Potential by Applying Exergy Analysis
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2913
2923
. 10.1007/s10973-019-09198-1
36.
Li
,
Z. X.
,
Shahsavar
,
A.
,
Al-Rashed
,
A. A.
,
Kalbasi
,
R.
,
Afrand
,
M.
, and
Talebizadehsardari
,
P.
,
2019
, “
Multi-Objective Energy and Exergy Optimization of Different Configurations of Hybrid Earth-air Heat Exchanger and Building Integrated Photovoltaic/Thermal System
,”
Energy Convers. Manage.
,
195
, pp.
1098
1110
. 10.1016/j.enconman.2019.05.074
37.
Kalbasi
,
R.
,
Shahsavar
,
A.
, and
Afrand
,
M.
,
2020
, “
Incorporating Novel Heat Recovery Units Into an AHU for Energy Demand Reduction-Exergy Analysis
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2821
2830
. 10.1007/s10973-019-09060-4
38.
Yari
,
M.
,
Kalbasi
,
R.
, and
Talebizadehsardari
,
P.
,
2019
, “
Energetic-exergetic Analysis of an air Handling Unit to Reduce Energy Consumption by a Novel Creative Idea
,”
Int. J. Numer. Methods Heat Fluid Flow
.
39.
Fang
,
X.
,
Jin
,
X.
,
Du
,
Z.
, and
Wang
,
Y.
,
2016
, “
The Evaluation of Operation Performance of HVAC System Based on the Ideal Operation Level of System
,”
Energ. Buildings
,
110
, pp.
330
344
. 10.1016/j.enbuild.2015.11.020
40.
Sayadi
,
S.
,
Tsatsaronis
,
G.
,
Morosuk
,
T.
,
Baranski
,
M.
,
Sangi
,
R.
, and
Müller
,
D.
,
2019
, “
Exergy-Based Control Strategies for the Efficient Operation of Building Energy Systems
,”
J. Cleaner Prod.
,
241
, p.
118277
.
41.
Hu
,
P.
,
Hu
,
Q.
,
Lin
,
Y.
,
Yang
,
W.
, and
Xing
,
L.
,
2017
, “
Energy and Exergy Analysis of a Ground Source Heat Pump System for a Public Building in Wuhan, China Under Different Control Strategies
,”
Energ. Buildings
,
152
, pp.
301
312
. 10.1016/j.enbuild.2017.07.058
42.
Khalid
,
F.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
, “
Development and Analysis of Sustainable Energy Systems for Building HVAC Applications
,”
Appl. Therm. Eng.
,
87
, pp.
389
401
.
43.
Equipment
,
A. H. H. S.
,
2000
,
Chapter 44: Air-tO-Air Energy Recovery
.
You do not currently have access to this content.