Abstract

In this study, computational simulations have been performed to investigate the turbulent characteristics and energy consumption through heat exchanger tubes equipped by new perforated V-shaped rectangular winglet (PVRW) turbulators. The effects of the holes intensity on the velocity and temperature contours are additionally investigated. The Reynolds number, hole diameter ratio, and the number of holes selected are in the range of 5000 ≤ Re ≤ 18,000, 0 ≤ DR ≤ 0.40, and 0 ≤ N ≤ 14, respectively. Renormalization group (RNG) k–ε turbulent model which is a finite volume solver is utilized for the computational fluid dynamics (CFD) simulation. It was noticed that the proposed perforated turbulators could considerably intensify the thermal performance compared to typical VRW inserts. It is found that the recirculating flow generated by the PVRW augments the fluid mixing and transfers the heat from the pipe walls to the core of the tube. The simulations illustrate that the amount of heat transfer enhances 25.2% reducing the DR from 0.4 to 0.13 at Re = 18,000 and N = 14. Also, using PVRW turbulators with N = 7 and DR = 0.26 augments the average Nusselt number around 354.3% compared to the circular pipe without inserts. The highest thermal efficiency parameter of η = 2.25 could be obtained at Re = 5000 for the heat exchangers fitted by vortex generators with N = 14 and DR = 0.26.

References

References
1.
Chougule
,
S. S.
,
Sahu
,
S. K.
, and
Pise
,
A. T.
,
2014
, “
Thermal Performance of Two Phase Thermosyphon Flat-Plate Solar Collectors Using Nanofluid
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
014503
. 10.1115/1.4025591
2.
Rashidi
,
S.
,
Kashefi
,
M. H.
, and
Hormozi
,
F.
,
2018
, “
Potential Applications of Inserts in Solar Thermal Energy Systems—A Review to Identify the Gaps and Frontier Challenges
,”
Sol. Energy
,
171
, pp.
929
952
. 10.1016/j.solener.2018.07.017
3.
Hattori
,
H.
,
Houra
,
T.
,
Kono
,
A.
, and
Yoshikawa
,
S.
,
2017
, “
Computational Fluid Dynamics Study for Improvement of Prediction of Various Thermally Stratified Turbulent Boundary Layers
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051209
. 10.1115/1.4036177
4.
Nakhchi
,
M. E.
, and
Esfahani
,
J.
,
2019
, “
Sensitivity Analysis of a Heat Exchanger Tube Fitted With Cross-cut Twisted Tape With Alternate Axis
,”
ASME J. Heat Transfer
,
141
(
4
), p.
041902
. 10.1115/1.4042780
5.
Nakhchi
,
M.
, and
Esfahani
,
J.
,
2019
, “
Numerical Investigation of Rectangular-Cut Twisted Tape Insert on Performance Improvement of Heat Exchangers
,”
Int. J. Therm. Sci.
,
138
, pp.
75
83
. 10.1016/j.ijthermalsci.2018.12.039
6.
Nakhchi
,
M.
, and
Esfahani
,
J.
,
2018
, “
Cu-water Nanofluid Flow and Heat Transfer in a Heat Exchanger Tube Equipped With Cross-cut Twisted Tape
,”
Powder Technol.
,
339
, pp.
985
994
. 10.1016/j.powtec.2018.08.087
7.
Xie
,
G.
,
Li
,
S.
,
Zhang
,
W.
, and
Sunden
,
B.
,
2013
, “
Computational Fluid Dynamics Modeling Flow Field and Side-Wall Heat Transfer in Rectangular Rib-Roughened Passages
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042001
. 10.1115/1.402333
8.
Rashidi
,
S.
,
Akbarzadeh
,
M.
,
Masoodi
,
R.
, and
Languri
,
E.
,
2017
, “
Thermal-hydraulic and Entropy Generation Analysis for Turbulent Flow Inside a Corrugated Channel
,”
Int. J. Heat Mass Transfer
,
109
, pp.
812
823
. 10.1016/j.ijheatmasstransfer.2017.02.033
9.
Akbarzadeh
,
M.
,
Rashidi
,
S.
, and
Esfahani
,
J.
,
2017
, “
Influences of Corrugation Profiles on Entropy Generation, Heat Transfer, Pressure Drop, and Performance in a Wavy Channel
,”
Appl. Therm. Eng.
,
116
, pp.
278
291
. 10.1016/j.applthermaleng.2017.01.076
10.
Zhou
,
J.
,
Hatami
,
M.
,
Song
,
D.
, and
Jing
,
D.
,
2016
, “
Design of Microchannel Heat Sink With Wavy Channel and Its Time-Efficient Optimization with Combined RSM and FVM Methods
,”
Int. J. Heat Mass Transfer
,
103
, pp.
715
724
. 10.1016/j.ijheatmasstransfer.2016.07.100
11.
Tang
,
W.
,
Hatami
,
M.
,
Zhou
,
J.
, and
Jing
,
D.
,
2017
, “
Natural Convection Heat Transfer in a Nanofluid-Filled Cavity With Double Sinusoidal Wavy Walls of Various Phase Deviations
,”
Int. J. Heat Mass Transfer
,
115
, pp.
430
440
. 10.1016/j.ijheatmasstransfer.2017.07.057
12.
Nakhchi
,
M.
, and
Esfahani
,
J.
,
2019
, “
Numerical Investigation of Turbulent Cu-Water Nanofluid in Heat Exchanger Tube Equipped With Perforated Conical Rings
,”
Adv. Powder Technol.
,
30
(
7
), pp.
1338
1347
. 10.1016/j.apt.2019.04.009
13.
Nakhchi
,
M.
,
Esfahani
,
J.
, and
Kim
,
K.
,
2020
, “
Numerical Study of Turbulent Flow Inside Heat Exchangers Using Perforated Louvered Strip Inserts
,”
Int. J. Heat Mass Transfer
,
148
, p.
119143
. 10.1016/j.ijheatmasstransfer.2019.119143
14.
Nakhchi
,
M.
, and
Esfahani
,
J.
,
2020
, “
Numerical Investigation of Heat Transfer Enhancement Inside Heat Exchanger Tubes Fitted With Perforated Hollow Cylinders
,”
Int. J. Therm. Sci.
,
147
, p.
106153
. 10.1016/j.ijthermalsci.2019.106153
15.
Mosayebidorcheh
,
S.
, and
Hatami
,
M.
,
2018
, “
Analytical Investigation of Peristaltic Nanofluid Flow and Heat Transfer in an Asymmetric Wavy Wall Channel (Part I: Straight Channel)
,”
Int. J. Heat Mass Transfer
,
126
, pp.
790
799
. 10.1016/j.ijheatmasstransfer.2018.05.080
16.
Mosayebidorcheh
,
S.
, and
Hatami
,
M.
,
2018
, “
Analytical Investigation of Peristaltic Nanofluid Flow and Heat Transfer in an Asymmetric Wavy Wall Channel (Part II: Divergent Channel)
,”
Int. J. Heat Mass Transfer
,
126
, pp.
800
808
. 10.1016/j.ijheatmasstransfer.2018.05.077
17.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
18.
Xiong
,
Q.
,
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Lorenzini
,
G.
,
2020
, “
A CFD Investigation of the Effect of non-Newtonian Behavior of Cu–Water Nanofluids on Their Heat Transfer and Flow Friction Characteristics
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2601
2621
. 10.1007/s10973-019-08757-w
19.
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Xiong
,
Q.
,
2020
, “
CFD Study of Heat Transfer and Fluid Flow in a Parabolic Trough Solar Receiver With Internal Annular Porous Structure and Synthetic Oil–Al2O3 Nanofluid
,”
Renewable Energy
,
145
, pp.
2598
2614
. 10.1016/j.renene.2019.08.042
20.
Hatami
,
M.
,
Zhou
,
J.
,
Geng
,
J.
,
Song
,
D.
, and
Jing
,
D.
,
2017
, “
Optimization of a Lid-Driven T-Shaped Porous Cavity to Improve the Nanofluids Mixed Convection Heat Transfer
,”
J. Mol. Liq.
,
231
, pp.
620
631
. 10.1016/j.molliq.2017.02.048
21.
Hatami
,
M.
,
Song
,
D.
, and
Jing
,
D.
,
2016
, “
Optimization of a Circular-Wavy Cavity Filled by Nanofluid Under the Natural Convection Heat Transfer Condition
,”
Int. J. Heat Mass Transfer
,
98
, pp.
758
767
. 10.1016/j.ijheatmasstransfer.2016.03.063
22.
Nicodemus
,
J. H.
,
Huang
,
X.
,
Dentinger
,
E.
,
Petitt
,
K.
, and
Smith
,
J. H.
,
2020
, “
Effects of Baffle Width on Heat Transfer to an Immersed Coil Heat Exchanger: Experimental Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050901
. 10.1115/1.4045538
23.
Akbarzadeh
,
M.
,
Rashidi
,
S.
,
Masoodi
,
R.
, and
Samimi-Abianeh
,
O.
,
2019
, “
Effect of Transverse Twisted Baffles on Performance and Irreversibilities in a Duct
,”
J. Thermophys. Heat Transfer
,
33
(
1
), pp.
49
62
. 10.2514/1.t5373
24.
Rashidi
,
S.
,
Akbarzadeh
,
M.
,
Karimi
,
N.
, and
Masoodi
,
R.
,
2018
, “
Combined Effects of Nanofluid and Transverse Twisted-Baffles on the Flow Structures, Heat Transfer and Irreversibilities Inside a Square Duct–a Numerical Study
,”
Appl. Therm. Eng.
,
130
, pp.
135
148
. 10.1016/j.applthermaleng.2017.11.048
25.
Rashidi
,
S.
,
Zade
,
N. M.
, and
Esfahani
,
J. A.
,
2017
, “
Thermo-fluid Performance and Entropy Generation Analysis for a New Eccentric Helical Screw Tape Insert in a 3D Tube
,”
Chem. Eng. Process.
,
117
, pp.
27
37
. 10.1016/j.cep.2017.03.013
26.
Zade
,
N. M.
,
Akar
,
S.
,
Rashidi
,
S.
, and
Esfahani
,
J. A.
,
2017
, “
Thermo-hydraulic Analysis for a Novel Eccentric Helical Screw Tape Insert in a Three Dimensional Tube
,”
Appl. Therm. Eng.
,
124
, pp.
413
421
. 10.1016/j.applthermaleng.2017.06.036
27.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2020
, “
Heat Transfer Evaluation for a Two-Pass Smooth Wall Channel: Stationary and Rotating Cases
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061305
. 10.1115/1.4045535
28.
Bovand
,
M.
,
Rashidi
,
S.
, and
Esfahani
,
J. A.
,
2015
, “
Enhancement of Heat Transfer by Nanofluids and Orientations of the Equilateral Triangular Obstacle
,”
Energy Convers. Manage.
,
97
, pp.
212
223
. 10.1016/j.enconman.2015.03.042
29.
Zhou
,
G.
, and
Ye
,
Q.
,
2012
, “
Experimental Investigations of Thermal and Flow Characteristics of Curved Trapezoidal Winglet Type Vortex Generators
,”
Appl. Therm. Eng.
,
37
, pp.
241
248
. 10.1016/j.applthermaleng.2011.11.024
30.
Wu
,
J.
, and
Tao
,
W.
,
2011
, “
Impact of Delta Winglet Vortex Generators on the Performance of a Novel fin-Tube Surfaces With Two Rows of Tubes in Different Diameters
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2895
2901
. 10.1016/j.enconman.2011.03.002
31.
Gholami
,
A.
,
Wahid
,
M. A.
, and
Mohammed
,
H.
,
2014
, “
Heat Transfer Enhancement and Pressure Drop for Fin-and-Tube Compact Heat Exchangers With Wavy Rectangular Winglet-Type Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
132
140
. 10.1016/j.icheatmasstransfer.2014.02.016
32.
Song
,
K.
,
Xi
,
Z.
,
Su
,
M.
,
Wang
,
L.
,
Wu
,
X.
, and
Wang
,
L.
,
2017
, “
Effect of Geometric Size of Curved Delta Winglet Vortex Generators and Tube Pitch on Heat Transfer Characteristics of Fin-Tube Heat Exchanger
,”
Exp. Therm. Fluid. Sci.
,
82
, pp.
8
18
. 10.1016/j.expthermflusci.2016.11.002
33.
Xu
,
Y.
,
Islam
,
M.
, and
Kharoua
,
N.
,
2017
, “
Numerical Study of Winglets Vortex Generator Effects on Thermal Performance in a Circular Pipe
,”
Int. J. Therm. Sci.
,
112
, pp.
304
317
. 10.1016/j.ijthermalsci.2016.10.015
34.
Sawhney
,
J.
,
Maithani
,
R.
, and
Chamoli
,
S.
,
2017
, “
Experimental Investigation of Heat Transfer and Friction Factor Characteristics of Solar Air Heater Using Wavy Delta Winglets
,”
Appl. Therm. Eng.
,
117
, pp.
740
751
. 10.1016/j.applthermaleng.2017.01.113
35.
Salem
,
M.
,
Althafeeri
,
M.
,
Elshazly
,
K.
,
Higazy
,
M.
, and
Abdrabbo
,
M.
,
2017
, “
Experimental Investigation on the Thermal Performance of a Double Pipe Heat Exchanger With Segmental Perforated Baffles
,”
Int. J. Therm. Sci.
,
122
, pp.
39
52
. 10.1016/j.ijthermalsci.2017.08.008
36.
Luo
,
L.
,
Wen
,
F.
,
Wang
,
L.
,
Sundén
,
B.
, and
Wang
,
S.
,
2016
, “
Thermal Enhancement by Using Grooves and Ribs Combined With Delta-Winglet Vortex Generator in a Solar Receiver Heat Exchanger
,”
Appl. Energy
,
183
, pp.
1317
1332
. 10.1016/j.apenergy.2016.09.077
37.
Skullong
,
S.
,
Promthaisong
,
P.
,
Promvonge
,
P.
,
Thianpong
,
C.
, and
Pimsarn
,
M.
,
2018
, “
Thermal Performance in Solar Air Heater With Perforated-Winglet-Type Vortex Generator
,”
Sol. Energy
,
170
, pp.
1101
1117
. 10.1016/j.solener.2018.05.093
38.
Chamoli
,
S.
,
Lu
,
R.
, and
Yu
,
P.
,
2017
, “
Thermal Characteristic of a Turbulent Flow Through a Circular Tube Fitted With Perforated Vortex Generator Inserts
,”
Appl. Therm. Eng.
,
121
, pp.
1117
1134
. 10.1016/j.applthermaleng.2017.03.145
39.
Sheikholeslami
,
M.
, and
Ganji
,
D.
,
2016
, “
Heat Transfer Improvement in a Double Pipe Heat Exchanger by Means of Perforated Turbulators
,”
Energy Convers. Manage.
,
127
, pp.
112
123
. 10.1016/j.enconman.2016.08.090
40.
Promvonge
,
P.
, and
Skullong
,
S.
,
2020
, “
Thermo-hydraulic Performance in Heat Exchanger Tube With V-Shaped Winglet Vortex Generator
,”
Appl. Therm. Eng.
,
164
, p.
114424
. 10.1016/j.applthermaleng.2019.114424
41.
Nakhchi
,
M.
, and
Esfahani
,
J.
,
2020
, “
CFD Approach for Two-Phase CuO Nanofluid Flow Through Heat Exchangers Enhanced by Double Perforated Louvered Strip Insert
,”
Powder Technol.
,
367
, pp.
877
888
. 10.1016/j.powtec.2020.04.043
42.
Eiamsa-Ard
,
S.
,
Somkleang
,
P.
,
Nuntadusit
,
C.
, and
Thianpong
,
C.
,
2013
, “
Heat Transfer Enhancement in Tube by Inserting Uniform/Non-Uniform Twisted-Tapes With Alternate Axes: Effect of Rotated-Axis Length
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
289
309
. 10.1016/j.applthermaleng.2013.01.041
43.
Rahimi
,
M.
,
Shabanian
,
S. R.
, and
Alsairafi
,
A. A.
,
2009
, “
Experimental and CFD Studies on Heat Transfer and Friction Factor Characteristics of a Tube Equipped With Modified Twisted Tape Inserts
,”
Chem. Eng. Process.
,
48
(
3
), pp.
762
770
. 10.1016/j.cep.2008.09.007
44.
Eiamsa-Ard
,
S.
, and
Promvonge
,
P.
,
2010
, “
Performance Assessment in a Heat Exchanger Tube With Alternate Clockwise and Counter-Clockwise Twisted-Tape Inserts
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1364
1372
. 10.1016/j.ijheatmasstransfer.2009.12.023
45.
Eiamsa-ard
,
S.
,
Seemawute
,
P.
, and
Wongcharee
,
K.
,
2010
, “
Influences of Peripherally-Cut Twisted Tape Insert on Heat Transfer and Thermal Performance Characteristics in Laminar and Turbulent Tube Flows
,”
Exp. Therm. Fluid. Sci.
,
34
(
6
), pp.
711
719
. 10.1016/j.expthermflusci.2009.12.013
46.
Murugesan
,
P.
,
Mayilsamy
,
K.
, and
Suresh
,
S.
,
2010
, “
Turbulent Heat Transfer and Pressure Drop in Tube Fitted With Square-Cut Twisted Tape
,”
Chin. J. Chem. Eng.
,
18
(
4
), pp.
609
617
. 10.1016/S1004-9541(10)60264-9
47.
Eiamsa-Ard
,
S.
,
Thianpong
,
C.
, and
Eiamsa-Ard
,
P.
,
2010
, “
Turbulent Heat Transfer Enhancement by Counter/Co-swirling Flow in a Tube Fitted With Twin Twisted Tapes
,”
Exp. Therm. Fluid. Sci.
,
34
(
1
), pp.
53
62
. 10.1016/j.expthermflusci.2009.09.002
48.
Saysroy
,
A.
,
Changcharoen
,
W.
, and
Eiamsa-ard
,
S.
,
2018
, “
Performance Assessment of Turbular Heat Exchanger Tubes Containing Rectangular-Cut Twisted Tapes With Alternate Axes
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
433
445
. 10.1007/s12206-017-1244-4
49.
Piriyarungrod
,
N.
,
Kumar
,
M.
,
Thianpong
,
C.
,
Pimsarn
,
M.
,
Chuwattanakul
,
V.
, and
Eiamsa-ard
,
S.
,
2018
, “
Intensification of Thermo-Hydraulic Performance in Heat Exchanger Tube Inserted With Multiple Twisted-Tapes
,”
Appl. Therm. Eng.
,
136
, pp.
516
530
. 10.1016/j.applthermaleng.2018.02.097
50.
Chingtuaythong
,
W.
,
Promvonge
,
P.
,
Thianpong
,
C.
, and
Pimsarn
,
M.
,
2017
, “
Heat Transfer Characterization in a Tubular Heat Exchanger With V-Shaped Rings
,”
Appl. Therm. Eng.
,
110
, pp.
1164
1171
. 10.1016/j.applthermaleng.2016.09.020
51.
Promvonge
,
P.
,
2008
, “
Thermal Augmentation in Circular Tube with Twisted Tape and Wire Coil Turbulators
,”
Energy Convers. Manage.
,
49
(
11
), pp.
2949
2955
. 10.1016/j.enconman.2008.06.022
You do not currently have access to this content.