Abstract

Recent trends in advanced nanotechnology developed thermal consequences of nanoparticles due to increasing significance in various engineering and thermal extrusion systems. The current continuation analyzes the axisymmetric stagnation point flow of magnetized rate-type nanoparticles configured by a porous stretching/shrinking rotating disk in the presence of motile microorganisms. A famous rate-type polymeric liquid namely Maxwell fluid has been used to examine the rheological consequences. Constitutive expressions based on the Buongiorno nanofluid model are used to examine the thermophoresis and Brownian motion features. With imposing similarity variables proposed by von Karman, the formulated problem is composed into dimensionless form. With the implementation of famous numerical technique bvp4c, the solution of governing flow equations is simulated. Graphical significance for each physical parameter is interpolated with relevant physical aspects. The variation in local Nusselt number, local Sherwood number, and motile density number corresponding to engineering parameters is numerically iterated and expressed in a tabular form. The study revealed that radial direction velocity component decreases by increasing the Deborah number and buoyancy ratio parameter. An enhanced temperature distribution for both stretching and shrinking cases has been noted by increasing the Biot number and thermophoresis parameter. A lower motile microorganisms distributed is noted due to the involvement of motile diffusivity.

References

1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Pub. Fed.
,
231
, pp.
99
106
.
2.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
3.
Malik
,
M. Y.
,
Khan
,
I.
,
Hussain
,
A.
, and
Salahuddin
,
T.
,
2015
, “
Mixed Convection Flow of MHD Eyring-Powell Nanofluid Over a Stretching Sheet: A Numerical Study
,”
AIP Adv.
,
5
, p.
11711
. 10.1063/1.4935639
4.
Turkyilmazoglu
,
M.
,
2016
, “
Flow of Nanofluid Plane Wall jet and Heat Transfer
,”
Europ. J. Mech. B Fluids
,
59
, pp.
18
24
. 10.1016/j.euromechflu.2016.04.007
5.
Hsiao
,
K. L.
,
2016
, “
Stagnation Electrical MHD Nanofluid Mixed Convection With Slip Boundary on a Stretching Sheet
,”
Appl. Therm. Eng.
,
98
, pp.
850
861
. 10.1016/j.applthermaleng.2015.12.138
6.
Tlili
,
I.
,
Hamadneh
,
N. N.
,
Khan
,
W. A.
, and
Atawneh
,
S.
,
2018
, “
Thermodynamic Analysis of MHD Couette–Poiseuille Flow of Water-Based Nanofluids in a Rotating Channel With Radiation and Hall Effects
,”
J. Therm. Anal. Calorim.
,
132
(
3
), pp.
1899
1912
. 10.1007/s10973-018-7066-5
7.
Khan
,
S. U.
,
Waqas
,
H.
,
Shehzad
,
S. A.
, and
Imran
,
M.
,
2019
, “
Theoretical Analysis for Tangent Hyperbolic Nanoparticles With Combined Electrical MHD, Activation Energy and Wu’s Slip Features: A Mathematical Model
,”
Phys. Scr.
,
94
(
12
), p.
125211
. 10.1088/1402-4896/ab399f
8.
Asma
,
M.
,
Othman
,
W. A. M.
, and
Muhammad
,
T.
,
2019
, “
Numerical Study for Darcy–Forchheimer Flow of Nanofluid due to a Rotating Disk With Binary Chemical Reaction and Arrhenius Activation Energy
,”
Mathematics
,
7
(
10
), p.
921
. 10.3390/math7100921
9.
Reddy
,
J. V. R.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2018
, “
Combined Effects of Frictional and Joule Heating on MHD Nonlinear Radiative Casson and Williamson Ferrofluid Flows With Temperature Dependent Viscosity
,”
Int. J. Appl. Comp. Math.
,
4
(
6
), p.
140
. 10.1007/s40819-018-0572-0
10.
Khan
,
M. I.
,
Alsaedi
,
A.
,
Qayyum
,
S.
,
Hayat
,
T.
, and
Khan
,
M. I.
,
2019
, “
Entropy Generation Optimization in Flow of Prandtl–Eyring Nanofluid With Binary Chemical Reaction and Arrhenius Activation Energy
,”
Colloids Surf., A
,
570
, pp.
117
126
. 10.1016/j.colsurfa.2019.02.060
11.
Wakif
,
A.
,
Zoubair
,
B.
, and
Rachid
,
S.
,
2017
, “
Numerical Study of the Onset of Convection in a Newtonian Nanofluid Layer With Spatially Uniform and Non Uniform Internal Heating
,”
J. Nanofluids
,
6
(
1
), pp.
136
148
. 10.1166/jon.2017.1293
12.
Wakif
,
A.
,
Boulahia
,
Z.
, and
Sehaqui
,
R.
,
2017
, “
Numerical Analysis of the Onset of Longitudinal Convective Rolls in a Porous Medium Saturated by an Electrically Conducting Nanofluid in the Presence of an External Magnetic Field
,”
Results Phys.
,
7
, pp.
2134
2152
. 10.1016/j.rinp.2017.06.003
13.
Wakif
,
A.
,
Boulahia
,
Z.
, and
Sehaqui
,
R.
,
2018
, “
A Semi-Analytical Analysis of Electro-Thermo-Hydrodynamic Stability in Dielectric Nanofluids Using Buongiorno’s Mathematical Model Together With More Realistic Boundary Conditions
,”
Results Phys.
,
9
, pp.
1438
1454
. 10.1016/j.rinp.2018.01.066
14.
Wakif
,
A.
,
Boulahia
,
Z.
,
Mishra
,
S. R.
,
Rashidi
,
M. M.
, and
Sehaqui
,
R.
,
2018
, “
Influence of a Uniform Transverse Magnetic Field on the Thermo-Hydrodynamic Stability in Water-Based Nanofluids With Metallic Nanoparticles Using the Generalized Buongiorno’s Mathematical Model
,”
Eur. Phys. J. Plus.
,
133
(
5
), p.
181
. 10.1140/epjp/i2018-12037-7
15.
Mebarek-Oudina
,
F.
, and
Bessaïh
,
R.
,
2019
, “
Numerical Simulation of Natural Convection Heat Transfer of Copper-Water Nanofluid in a Vertical Cylindrical Annulus With Heat Sources
,”
Thermophys. Aeromech.
,
26
(
3
), pp.
325
334
. 10.1134/S0869864319030028
16.
Mebarek-Oudina
,
F.
,
2019
, “
Convective Heat Transfer of Titania Nanofluids of Different Base Fluids in Cylindrical Annulus With Discrete Heat Source
,”
Heat Transfer—Asian Res.
,
48
(
1
), pp.
135
147
. 10.1002/htj.21375
17.
Raza
,
J.
,
Farooq
,
M.
,
Mebarek-Oudina
,
F.
, and
Mahanthesh
,
B.
,
2019
, “
Multiple Slip Effects on MHD Non-Newtonian Nanofluid Flow Over a Nonlinear Permeable Elongated Sheet: Numerical and Statistical Analysis
,”
Multidiscip. Model. Mater. Struct.
,
15
(
5
), pp.
913
931
. 10.1108/MMMS-11-2018-0190
18.
Raza
,
J.
,
Mebarek-Oudina
,
F.
, and
Mahanthesh
,
B.
,
2019
, “
Magnetohydrodynamic Flow of Nano Williamson Fluid Generated by Stretching Plate With Multiple Slips
,”
Multidiscip. Model. Mater. Struct.
,
15
(
5
), pp.
871
894
. 10.1108/MMMS-11-2018-0183
19.
Laouira
,
H.
,
Mebarek-Oudina
,
F.
,
Hussein
,
A. K.
,
Kolsi
,
L.
,
Merah
,
A.
, and
Younis
,
O.
,
2020
, “
Heat Transfer Inside a Horizontal Channel With an Open Trapezoidal Enclosure Subjected to a Heat Source of Different Lengths
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
406
423
. 10.1002/htj.21618
20.
Mortazavi
,
S. M.
, and
Maleki
,
A.
,
2019
, “
A Review of Solar Compound Parabolic Collector in Water Desalination Systems
,”
Int. J. Simul. Model.
, pp.
1
16
10.1080/02286203.2019.1626539
21.
Li
,
J.
,
Mohammadi
,
A.
, and
Maleki
,
A.
,
2019
, “
Techno-economic Analysis of New Integrated System of Humid Air Turbine, Organic Rankine Cycle and Parabolic Trough Collector
,”
J. Therm. Anal. Calorim.
139
(
4
), pp.
2691
2703
10.1007/s10973-019-08855-9
22.
Komeilibirjandi
,
A.
,
Raffiee
,
A. H.
,
Maleki
,
A.
,
Nazari
,
M. A.
, and
Shadloo
,
M. S.
,
2019
, “
Thermal Conductivity Prediction of Nanofluids Containing CuO Nanoparticles by Using Correlation and Artificial Neural Network
,”
J. Therm. Anal. Calorim.
139
(
4
), pp.
2679
2689
10.1007/s10973-019-08838-w
23.
Maleki
,
A.
,
2019
, “
Optimal Operation of a Grid-Connected Fuel Cell Based Combined Heat and Power Systems Using Particle Swarm Optimization for Residential Sector
,”
Int. J. Ambient Energy
, pp.
1
20
. 10.1080/01430750.2018.1562968
24.
Asadi
,
A.
,
Kadijani
,
O. N.
,
Doranehgard
,
M. H.
,
Bozorg
,
M. V.
,
Xiong
,
Q.
,
Shadloo
,
M. S.
, and
Li
,
L. K. B.
,
2019
, “
Numerical Study on the Application of Biodiesel and Bioethanol in a Multiple Injection Diesel Engine
,”
Renew. Energ.
150
, pp.
1019
1029
10.1016/j.renene.2019.11.088
25.
Shadloo
,
M. S.
,
Kimiaeifar
,
A.
, and
Bagheri
,
D.
,
2013
, “
Series Solution for Heat Transfer of Continuous Stretching Sheet Immersed in a Micropolar Fluid in the Existence of Radiation
,”
Int. J. Numer. Method H.
,
23
(
2
), pp.
289
304
. 10.1108/09615531311293470
26.
Shadloo
,
M. S.
, and
Kimiaeifar
,
A.
,
2010
, “
Application of Homotopy Perturbation Method to Find an Analytical Solution for Magnetohydrodynamic Flows of Viscoelastic Fluids in Converging/Diverging Channels
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
2
), pp.
347
353
. 10.1243/09544062JMES2334
27.
Jamalabadi
,
M. Y. A.
,
Ghasemi
,
M.
,
Alamian
,
R.
,
Wongwises
,
S.
,
Afrand
,
M.
, and
Shadloo
,
M. S.
,
2019
, “
Modeling of Subcooled Flow Boiling With Nanoparticles Under the Influence of a Magnetic Field
,”
Symmetry
,
11
(
10
), p.
1275
. 10.3390/sym11101275
28.
Jamalabadi
,
M. Y. A.
,
Alamian
,
R.
,
Yan
,
W. M.
,
Li
,
L. K. B.
,
Leveneur
,
S.
, and
Shadloo
,
M. S.
,
2019
, “
Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers
,”
Symmetry
,
11
(
11
), p.
1353
. 10.3390/sym11111353
29.
Toghyani
,
S.
,
Afshari
,
E.
,
Baniasadi
,
E.
, and
Shadloo
,
M. S.
,
2019
, “
Energy and Exergy Analyses of a Nanofluid Based Solar Cooling and Hydrogen Production Combined System
,”
Renew. Energ.
,
141
, pp.
1013
1025
. 10.1016/j.renene.2019.04.073
30.
Sarafraz
,
M. M.
, and
Safaei
,
M. R.
,
2019
, “
Diurnal Thermal Evaluation of an Evacuated Tube Solar Collector (ETSC) Charged With Graphene Nanoplatelets-Methanol Nano-suspension
,”
Renew. Energ.
,
142
, pp.
364
372
. 10.1016/j.renene.2019.04.091
31.
Maleki
,
H.
,
Safaei
,
M. R.
,
Togun
,
H.
, and
Dahari
,
M.
,
2019
, “
Heat Transfer and Fluid Flow of Pseudo-Plastic Nanofluid Over a Moving Permeable Plate With Viscous Dissipation and Heat Absorption/Generation
,”
J. Therm. Anal. Calorim.
,
135
(
3
), pp.
1643
1654
. 10.1007/s10973-018-7559-2
32.
Afrand
,
M.
,
Karimipour
,
A.
,
Nadooshan
,
A. A.
, and
Akbari
,
M.
,
2016
, “
The Variations of Heat Transfer and Slip Velocity of FMWNT-Water Nano-fluid Along the Micro-Channel in the Lack and Presence of a Magnetic Field
,”
Phys. E
,
84
, pp.
474
481
. 10.1016/j.physe.2016.07.013
33.
Karimipour
,
A.
,
Nezhad
,
A. H.
,
Behzadmehr
,
A.
,
Alikhani
,
S.
, and
Abedini
,
E.
,
2011
, “
Periodic Mixed Convection of a Nanofluid in a Cavity With Top Lid Sinusoidal Motion
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
9
), pp.
2149
2160
. 10.1177/0954406211404634
34.
Maleki
,
H.
,
Safaei
,
M. R.
,
Alrashed
,
A. A. A. A.
, and
Kasaeian
,
A.
,
2019
, “
Flow and Heat Transfer in Non-Newtonian Nanofluids Over Porous Surfaces
,”
J. Therm. Anal. Calorim.
,
135
(
3
), pp.
1655
1666
. 10.1007/s10973-018-7277-9
35.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2006
, “
The Onset of Bio-Thermal Convection in a Suspension of Gyrotactic Microorganisms in a Fluid Layer: Oscillatory Convection
,”
Int. J. Thermal Sci.
,
45
(
10
), pp.
990
997
. 10.1016/j.ijthermalsci.2006.01.007
36.
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transf.
,
37
(
10
), pp.
1421
1425
. 10.1016/j.icheatmasstransfer.2010.08.015
37.
Jashim Uddin
,
M.
,
Kabir
,
M. N.
, and
Beg
,
O. A.
,
2016
, “
Computational Investigation of Stefan Blowing and Multiple-Slip Effects on Buoyancy-Driven Bioconvection Nanofluid Flow With Microorganisms
,”
Int. J. Heat Mass Transf.
,
95
, pp.
116
130
. 10.1016/j.ijheatmasstransfer.2015.11.015
38.
Raju
,
C. S. K.
, and
Sandeep
,
N.
,
2016
, “
Heat and Mass Transfer in MHD Non-Newtonian Bio-Convection Flow Over a Rotating Cone/Plate With Cross Diffusion
,”
J. Mol. Liq.
,
215
, pp.
115
126
. 10.1016/j.molliq.2015.12.058
39.
Mahdy
,
A.
,
2016
, “
Natural Convection Boundary Layer Flow due to Gyrotactic Microorganisms About a Vertical Cone in Porous Media Saturated by a Nanofluid
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
1
), p.
67
. 10.1007/s40430-015-0313-9
40.
Jashim Uddin
,
M.
,
Khan
,
W. A.
,
Qureshi
,
S. R.
, and
Beg
,
O. A.
,
2017
, “
Bioconvection Nanofluid Slip Flow Past a Wavy Surface With Applications in Nano-Biofuel Cells
,”
Chin. J. Phys.
,
55
(
5
), pp.
2048
2063
. 10.1016/j.cjph.2017.08.005
41.
Farooq
,
S.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Ahmad
,
B.
,
2017
, “
Numerically Framing the Features of Second Order Velocity Slip in Mixed Convective Flow of Sisko Nanomaterial Considering Gyrotactic Microorganisms
,”
Int. J. Heat Mass Transf.
,
112
, pp.
521
532
. 10.1016/j.ijheatmasstransfer.2017.05.005
42.
Alwatban
,
A. M.
,
Khan
,
S. U.
,
Waqas
,
H.
, and
Tlili
,
I.
,
2019
, “
Interaction of Wu’s Slip Features in Bioconvection of Eyring Powell Nanoparticles With Activation Energy
,”
Processes
,
7
(
11
), p.
859
. 10.3390/pr7110859
43.
Waqas
,
H.
,
Khan
,
S. U.
,
Imran
,
M.
, and
Bhatti
,
M. M.
,
2019
, “
Thermally Developed Falkner-Skan Bioconvection Flow of a Magnetized Nanofluid in the Presence of Motile Gyrotactic Microorganism: Buongiorno’s Nanofluid Model
,”
Phys. Scr.
,
94
(
11
), p.
115304
. 10.1088/1402-4896/ab2ddc
44.
Karman
,
T. V.
,
1921
, “
Uber Laminare and Turbulente
,”
Reibung. Zeit Angew Math. Mech.
,
1
(
4
), pp.
233
252
. 10.1002/zamm.19210010401
45.
Khan
,
N.
,
Hashmi
,
M. S.
,
Khan
,
S. U.
, and
Syed
,
W. A.
,
2018
, “
Study of Polymeric Liquid Between Stretching Disks With Chemical Reaction
,”
J. Braz. Soc.
,
40
, p.
102
. 10.1007/s40430-018-1026-7
46.
Turkyilmazoglu
,
M.
,
2014
, “
MHD Fluid Flow and Heat Transfer due to a Shrinking Rotating Disk
,”
Comput. Fluids
,
90
, pp.
51
56
. 10.1016/j.compfluid.2013.11.005
47.
Hashmi
,
M. S.
,
Khan
,
N.
,
Khan
,
S. U.
, and
Rashidi
,
M. M.
,
2017
, “
A Mathematical Model for Mixed Convective Flow of Chemically Reactive Oldroyd-B Fluid Between Isothermal Stretching Disks
,”
Results Phys.
,
7
, pp.
3016
3023
. 10.1016/j.rinp.2017.08.017
48.
Khan
,
N.
,
Nabwey
,
H. A.
,
Hashmi
,
M. S.
,
Khan
,
S. U.
, and
Tlili
,
I.
,
2020
, “
A Theoretical Analysis for Mixed Convection Flow of Maxwell Fluid Between Two Infinite Isothermal Stretching Disks With Heat Source/Sink
,”
Symmetry
,
12
(
1
), p.
62
. 10.3390/sym12010062
49.
Restrepo-Flórez
,
J.
,
Wood
,
J. A.
,
Rehmann
,
L.
,
Thompson
,
M.
, and
Bassi
,
A.
,
2015
, “
Effect of Biodiesel on Biofilm Biodeterioration of Linear Low Density Polyethylene in a Simulated Fuel Storage Tank
,”
ASME. J. Energy Resour. Technol.
,
137
(
3
), p.
032211
. 10.1115/1.4030107
50.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Dissipation, Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME. J. Energy Resour. Technol.
,
138
(
5
), pp.
052002
. 10.1115/1.4032792
51.
Kannaiyan
,
K.
,
Anoop
,
K.
, and
Sadr
,
R.
,
2016
, “
Effect of Nanoparticles on the Fuel Properties and Spray Performance of Aviation Turbine Fuel
,”
ASME. J. Energy Resour. Technol.
,
139
(
3
), p.
032201
. 10.1115/1.4034858
52.
Derakhshan
,
S.
, and
Khosravian
,
M.
,
2019
, “
Exergy Optimization of a Novel Combination of a Liquid Air Energy Storage System and a Parabolic Trough Solar Collector Power Plant
,”
ASME. J. Energy Resour. Technol.
,
141
(
8
), p.
081901
. 10.1115/1.4042415
53.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2018
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME. J. Energy Resour. Technol.
,
141
(
4
), p.
042003
. 10.1115/1.4042004
54.
Khan
,
S.U.
, and
Shehzad
,
S.A.
,
2019
, “
Analysis for Time Dependent Flow of Carreau Nanofluid over Accelerating Surface with Gyrotactic Microorganisms: Model for Extrusion Systems
,”
Adv. Mech. Eng.
,
11
(
12
), pp.
1
11
.
55.
Siddiqui
,
A. A.
, and
Turkyilmazoglu
,
M.
,
2019
, “
A New Theoretical Approach of Wall Transpiration in the Cavity Flow of the Ferrofluids
,”
Micromachines
,
10
(
6
), p.
373
. 10.3390/mi10060373
You do not currently have access to this content.