Abstract

This research addresses the interesting rheological features of Jeffrey nanofluid containing gyrotactic microorganism over an accelerated configuration. The additional consequences of activation energy and thermal radiation are also encountered in the current flow problem. The characteristics of nanofluid is utilized by using Buongiorno’s nanofluid model, while the phenomenon of bioconvection is evaluated by Kuznestov and Nield model. Unlike traditional attempts, the analysis for thermal radiation is performed by using “one parametric approach” by expressing the Prandtl number and thermal radiation parameter in combined form, namely, effective Prandtl number. The governing equations reflecting the flow problem are analytically treated with the help of homotopic algorithm. The impact of flow parameters is graphically elaborated with relevant physical significance. Further, the numerical expressions for effective local Nusselt number, local Sherwood number, and motile density number with variation of flow parameters in articulated tabular form. It is observed that magnitude of skin friction coefficient oscillates periodically with time and magnitude of oscillation increases with increment of Deborah number and mixed convection constant. It is further emphasized that the temperature distribution is enhanced with buoyancy ratio constant and bioconvection Rayleigh number. The microorganism distribution increases with buoyancy ratio constant but reverse trend has been examined for Peclet number. The observations from the reported problem can be more effective for the development of bifurcation processes, biofuels, enzymes, etc.

References

1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Pub. Fed.
,
231
, pp.
99
106
.
2.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
3.
Hsiao
,
K.-L.
,
2016
, “
Stagnation Electrical MHD Nanofluid Mixed Convection With Slip Boundary on a Stretching Sheet
,”
Appl. Therm. Eng.
,
98
, pp.
850
861
. 10.1016/j.applthermaleng.2015.12.138
4.
Malik
,
M. Y.
,
Khan
,
I.
,
Hussain
,
A.
, and
Salahuddin
,
T.
,
2015
, “
Mixed Convection Flow of MHD Eyring-Powell Nanofluid Over a Stretching Sheet: A Numerical Study
,”
AIP Adv.
,
5
(
11
), p.
117118
. 10.1063/1.4935639
5.
Almakki
,
M.
,
Nandy
,
S. K.
,
Mondal
,
S.
,
Sibanda
,
P.
, and
Sibanda
,
D.
,
2018
, “
A Model for Entropy Generation in Stagnationpoint Flow of Non-Newtonian Jeffrey, Maxwell and Oldroyd- B Nanofluids
,”
Heat Transfer—Asian Res.
, pp.
1
18
.
6.
Sheikholeslami
,
M.
,
Haq
,
R.
,
Shafee
,
A.
, and
Li
,
Z.
,
2019
, “
; Elaraki YG; Tlili, I., Heat Transfer Simulation of Heat Storage Unit With Nanoparticles and Fins Through a Heat Exchanger
,”
Int. J. Heat Mass Transf.
,
135
, pp.
470
478
. 10.1016/j.ijheatmasstransfer.2019.02.003
7.
Turkyilmazoglu
,
M.
Single Phase Nanofluids in Fluid Mechanics and Their Hydrodynamic Linear Stability Analysis, Computer Methods and Programs in Biomedicine, Computer Methods and Programs in Biomedicine, Accessed Nov. 3, 2019, 105171.
8.
Balasubramanian
,
S.
,
Hari Narayana Rao
,
B.
, and
Raju
,
C. S. K.
,
2019
, “
Natural Nonlinear Convection of Dusty Fluid in a Suspension of Multi-Wall Carbon Nanotubes Nanoparticles With Different Temperature of Water and Suction
,”
Appl. Sci.
,
1
, p.
642
.
9.
Asma
,
M.
,
Othman
,
W. A. M.
, and
Muhammad
,
T.
,
2019
, “
Numerical Study for Darcy–Forchheimer Flow of Nanofluid Due to a Rotating Disk With Binary Chemical Reaction and Arrhenius Activation Energy
,”
Mathematics
,
7
(
10
), p.
921
. 10.3390/math7100921
10.
Iqbal
,
M. S.
,
Khan
,
W.
,
Mustafa
,
I.
, and
Ghaffari
,
A.
,
2019
, “
Numerical Study of Natural Convection Flow of Nanofluid Past a Circular Cone With Cattaneo–Christov Heat and Mass Flux Models
,”
Symmetry
,
11
(
11
), p.
1363
. 10.3390/sym11111363
11.
Khan
,
S. U.
,
Shehzad
,
S. A.
, and
Ali
,
N.
,
2018
, “
Interaction of Magneto-Nanoparticles in Williamson Fluid Flow Over Convective Oscillatory Moving Surface
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
4
), p.
195
. 10.1007/s40430-018-1126-4
12.
Ellahi
,
R.
,
Zeeshan
,
A.
,
Hussain
,
F.
, and
Abbas
,
T.
,
2019
, “
Thermally Charged MHD Bi-Phase Flow Coatings With Non-Newtonian Nanofluid and Hafnium Particles Along Slippery Walls
,”
Coatings
,
9
(
5
), p.
300
. 10.3390/coatings9050300
13.
Turkyilmazoglu
,
M.
,
2018
, “
Buongiorno Model in a Nanofluid Filled Asymmetric Channel Fulfilling Zero Net Particle Flux at the Walls
,”
Int. J. Heat Mass Transfer
,
126
, pp.
974
979
. 10.1016/j.ijheatmasstransfer.2018.05.093
14.
Turkyilmazoglu
,
M.
,
2019
, “
Free and Circular Jets Cooled by Single Phase Nanofluids
,”
Eur. J. Mech.—B/Fluids
,
76
, pp.
1
6
. 10.1016/j.euromechflu.2019.01.009
15.
Yaghoub
,
M.
,
Jamalabadi
,
A.
,
Ghasemi
,
M.
,
Alamian
,
R.
,
Wongwises
,
S.
,
Afrand
,
M.
, and
Shadloo
,
M. S.
,
2019
, “
Modeling of Subcooled Flow Boiling With Nanoparticles Under the Influence of a Magnetic Field
,”
Symmetry
,
11
(
10
), p.
1275
. 10.3390/sym11101275
16.
Yaghoub
,
M.
,
Jamalabadi
,
A.
,
Alamian
,
R.
,
Yan
,
W.-M.
,
Li
,
L. K. B.
,
Leveneur
,
S.
, and
Shadloo
,
M. S.
,
2019
, “
Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers
,”
Symmetry
,
11
(
11
), p.
1353
. 10.3390/sym11111353
17.
Toghyani
,
S.
,
Afshari
,
E.
,
Baniasadi
,
E.
, and
Shadloo
,
M. S.
,
2019
, “
Energy and Exergy Analyses of a Nanofluid Based Solar Cooling and Hydrogen Production Combined System
,”
Renewable Energy
,
141
, pp.
1013
1025
. 10.1016/j.renene.2019.04.073
18.
Sarafraz
,
M. M.
, and
RezaSafaei
,
M.
,
2019
, “
Diurnal Thermal Evaluation of an Evacuated Tube Solar Collector (ETSC) Charged With Graphene Nanoplatelets-Methanol Nano-Suspension
,”
Renewable Energy
,
142
, pp.
364
372
. 10.1016/j.renene.2019.04.091
19.
Maleki
,
H.
,
Safaei
,
M. R.
,
Alrashed
,
A. A. A. A.
, and
Kasaeian
,
A.
,
2019
, “
Flow and Heat Transfer in Non-Newtonian Nanofluids Over Porous Surfaces
,”
J. Therm. Anal. Calorim.
,
135
(
3
), pp.
1655
1666
. 10.1007/s10973-018-7277-9
20.
Komeilibirjandi
,
A.
,
Raffiee
,
A. H.
,
Maleki
,
A.
,
Nazari
,
M. A.
, and
Shadloo
,
M. S.
,
2020
, “
Thermal Conductivity Prediction of Nanofluids Containing CuO Nanoparticles by Using Correlation and Artificial Neural Network
,”
J. Therm. Anal. Calorim.
,
139
, pp.
2679
2689
. 10.1007/s10973-019-08838-w
21.
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transf.
,
37
(
10
), pp.
1421
1425
. 10.1016/j.icheatmasstransfer.2010.08.015
22.
Kuznetsov
,
A. V.
,
2011
, “
Nanofluid Bioconvection in Water-Based Suspensions Containing Nanoparticles and Oxytactic Microorganisms: Oscillatory Instability
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
100
. 10.1186/1556-276X-6-100
23.
Uddin
,
M. J.
,
Alginahi
,
Y.
,
Bég
,
O. A.
, and
Kabir
,
M. N.
,
2016
, “
Numerical Solutions for Gyrotactic Bioconvection in Nanofluid-Saturated Porous Media With Stefan Blowing and Multiple Slip Effects
,”
Comput. Math. Appl.
,
72
(
10
), pp.
2562
2581
. 10.1016/j.camwa.2016.09.018
24.
Ijaz Khan
,
M.
,
Waqas
,
M.
,
Hayat
,
T.
,
Khan
,
M. I.
, and
Alsaedi
,
A.
,
2017
, “
Behavior of Stratification Phenomenon in Flow of Maxwell Nanomaterial With Motile Gyrotactic Microorganisms in the Presence of Magnetic Field
,”
Int. J. Mech. Sci.
,
131–132
, pp.
426
434
.
25.
Raju
,
C. S. K.
,
Hoque
,
M. M.
, and
Sivasankar
,
T.
,
2017
, “
Radiative Flow of Casson Fluid Over a Moving Wedge Filled With Gyrotactic Microorganisms
,”
Adv. Powder Technol.
,
28
(
2
), pp.
575
583
. 10.1016/j.apt.2016.10.026
26.
Mosayebidorcheh
,
S.
,
Tahavori
,
M. A.
,
Mosayebidorcheh
,
T.
, and
Ganji
,
D. D.
,
2017
, “
Analysis of Nano-Bioconvection Flow Containing Both Nanoparticles and Gyrotactic Microorganisms in a Horizontal Channel Using Modified Least Square Method (MLSM)
,”
J. Mol. Liq.
,
227
, pp.
356
365
. 10.1016/j.molliq.2016.12.039
27.
Ramzan
,
M.
,
Chung
,
J. D.
, and
Ullah
,
N.
,
2017
, “
Radiative Magnetohydrodynamic Nanofluid Flow Due to Gyrotactic Microorganisms With Chemical Reaction and Non-Linear Thermal Radiation
,”
Int. J. Mech. Sci.
,
130
, pp.
31
40
. 10.1016/j.ijmecsci.2017.06.009
28.
Chakraborty
,
T.
,
Das
,
K.
, and
KumarKundu
,
P.
,
2018
, “
Framing the Impact of External Magnetic Field on Bioconvection of a Nanofluid Flow Containing Gyrotactic Microorganisms With Convective Boundary Conditions
,”
Alexandria Eng. J.
,
57
(
1
), pp.
61
71
. 10.1016/j.aej.2016.11.011
29.
Zhao
,
M.
,
Xiao
,
Y.
, and
Wang
,
S.
,
2018
, “
Linear Stability of Thermal-Bioconvection in a Suspension of Gyrotactic Micro-Organisms
,”
Int. J. Heat Mass Transfer
,
126
(
Part A
), pp.
95
102
.
30.
Zaman
,
S.
, and
Gul
,
M.
,
2019
, “
Magnetohydrodynamic Bioconvective Flow of Williamson Nanofluid Containing Gyrotactic Microorganisms Subjected to Thermal Radiation and Newtonian Conditions
,”
J. Theor. Biol.
,
479
, pp.
22
28
. 10.1016/j.jtbi.2019.02.015
31.
Rashad
,
A. M.
, and
Nabwey
,
H. A.
,
2019
, “
Gyrotactic Mixed Bioconvection Flow of a Nanofluid Past a Circular Cylinder With Convective Boundary Condition
,”
J. Taiwan Inst. Chem. Eng.
,
99
, pp.
9
17
. 10.1016/j.jtice.2019.02.035
32.
Khan
,
W. A.
,
Rashad
,
A. M.
,
Abdou
,
M. M. M.
, and
Tlili
,
I.
,
2019
, “
Natural Bioconvection Flow of a Nanofluid Containing Gyrotactic Microorganisms About a Truncated Cone
,”
Eur. J. Mech.—B/Fluids
,
75
, pp.
133
142
. 10.1016/j.euromechflu.2019.01.002
33.
Waqas
,
H.
,
Khan
,
S. U.
,
Hassan
,
M.
,
Bhatti
,
M. M.
, and
Imran
,
M.
,
2019
, “
Analysis for Bioconvection Flow of Modified Second Grade Fluid Containing Gyrotactic Microorganisms and Nanoparticles
,”
J. Mol. Liq.
,
291
(
1
). Article No. 111231.
34.
Khan
,
S. U.
,
Rauf
,
A.
,
Shehzad
,
S. A.
,
Abbas
,
Z.
, and
Javed
,
T.
,
2019
, “
Study of Bioconvection Flow in Oldroyd-B Nanofluid With Motile Organisms and Effective Prandtl Approach
,”
Phys. A
,
527
. Article No. 121179.
35.
Liao
,
S. J.
,
2014
,
Advances in the Homotopy Analysis Method
,
World Scientific Publishing
,
Singapore
.
36.
Turkyilmazoglu
,
M.
,
2010
, “
Analytic Approximate Solutions of Rotating Disk Boundary Layer Flow Subject to a Uniform Suction or Injection
,”
Int. J. Mech. Sci.
,
52
(
12
), pp.
1735
1744
. 10.1016/j.ijmecsci.2010.09.007
37.
Turkyilmazoglu
,
M.
,
2012
, “
Solution of the Thomas-Fermi Equation With a Convergent Approach
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
17
(
11
), pp.
4097
4103
. 10.1016/j.cnsns.2012.01.030
38.
Turkyilmazoglu
,
M.
,
2013
, “
The Analytical Solution of Mixed Convection Heat Transfer and Fluid Flow of a MHD Viscoelastic Fluid Over a Permeable Stretching Surface
,”
Int. J. Mech. Sci.
,
77
, pp.
263
268
. 10.1016/j.ijmecsci.2013.10.011
39.
Turkyilmazoglu
,
M.
,
2018
, “
Convergence Accelerating in the Homotopy Analysis Method: A New Approach
,”
Adv. Appl. Math. Mech.
,
10
(
4
), pp.
925
947
. 10.4208/aamm.OA-2017-0196
40.
Khan
,
N.
,
Hashmi
,
M. S.
,
Khan
,
S. U.
, and
Syed
,
W. A.
,
2018
, “
Study of Polymeric Liquid Between Stretching Disks With Chemical Reaction
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
2
), p.
102
. 10.1007/s40430-018-1026-7
41.
Ali
,
N.
,
Khan
,
S. U.
, and
Abbas
,
Z.
,
2015
, “
Hydromagnetic Flow and Heat Transfer of a Jeffrey Fluid Over an Oscillatory Stretching Surface
,”
Zeitschrift für Naturforschung A
,
70
(
7
), pp.
567
576
. 10.1515/zna-2014-0273
42.
Restrepo-Flórez
,
J.
,
Wood
,
J. A.
,
Rehmann
,
L.
,
Thompson
,
M.
, and
Bassi
,
A.
,
2015
, “
Effect of Biodiesel on Biofilm Biodeterioration of Linear Low Density Polyethylene in a Simulated Fuel Storage Tank
,”
ASME. J. Energy Resour. Technol.
,
137
(
3
), p.
032211
. 10.1115/1.4030107
43.
Wei Ting
,
T.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME. J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
44.
Kannaiyan
,
K.
,
Anoop
,
K.
, and
Sadr
,
R.
,
2016
, “
Effect of Nanoparticles on the Fuel Properties and Spray Performance of Aviation Turbine Fuel
,”
ASME. J. Energy Resour. Technol.
,
139
(
3
), p.
032201
. 10.1115/1.4034858
45.
Derakhshan
,
S.
, and
Khosravian
,
M.
,
2019
, “
Exergy Optimization of a Novel Combination of a Liquid Air Energy Storage System and a Parabolic Trough Solar Collector Power Plant
,”
ASME. J. Energy Resour. Technol.
,
141
(
8
), p.
081901
. 10.1115/1.4042415
46.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2018
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME. J. Energy Resour. Technol.
,
141
(
4
), p.
042003
. 10.1115/1.4042004
You do not currently have access to this content.