Abstract

Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.

References

1.
Toprak
,
A.
, and
Tigli
,
O.
,
2014
, “
Piezoelectric Energy Harvesting: State-of-the-Art and Challenges
,”
Appl. Phys. Rev.
,
1
(
3
), p.
031104
. 10.1063/1.4896166
2.
Wang
,
Z. L.
, and
Song
,
J.
,
2006
, “
Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,”
Science
,
312
(
5771
), pp.
242
246
. 10.1126/science.1124005
3.
Kumar
,
C. N.
,
2015
, “
Energy Collection via Piezoelectricity
,”
J. Phys.: Conf. Ser.
,
662
, p.
012031
. 10.1088/1742-6596/662/1/012031
4.
Malikopoulos
,
A. A.
,
2013
, “
Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041201
. 10.1115/1.4023334
5.
Yuan
,
Y.
,
Du
,
H.
,
Wang
,
P.
,
Chow
,
K. S.
,
Zhang
,
M.
,
Yu
,
S.
, and
Liu
,
B.
,
2013
, “
A ZnO Microcantilever for High-Frequency Nanopositioning: Modeling, Fabrication and Characterization
,”
Sens. Actuators, A
,
194
, pp.
75
83
. 10.1016/j.sna.2013.02.002
6.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
. 10.1088/0964-1726/18/2/025009
7.
Zhang
,
C.
,
Ge
,
Y.
,
Tan
,
J.
,
li
,
L.
,
Peng
,
Z.
, and
Wang
,
X.
,
2017
, “
Emissions From Light-Duty Passenger Cars Fueled With Ternary Blend of Gasoline, Methanol, and Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062202
. 10.1115/1.4036932
8.
Wong
,
K. V.
,
2014
, “
Land-Sail Vehicle to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014701
. 10.1115/1.4028362
9.
Bowen
,
C. R.
,
Kim
,
H. A.
,
Weaver
,
P. M.
, and
Dunn
,
S.
,
2014
, “
Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications
,”
Energy Environ. Sci.
,
7
(
1
), pp.
25
44
. 10.1039/C3EE42454E
10.
Kanno
,
I.
,
Ichida
,
T.
,
Adachi
,
K.
,
Kotera
,
H.
,
Shibata
,
K.
, and
Mishima
,
T.
,
2012
, “
Power-Generation Performance of Lead-Free (K, Na)Nbo3 Piezoelectric Thin-Film Energy Harvesters
,”
Sens. Actuators, A
,
179
, pp.
132
136
. 10.1016/j.sna.2012.03.003
11.
Li
,
H.
,
Tian
,
C.
, and
Deng
,
Z. D.
,
2014
, “
Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials
,”
Appl. Phys. Rev.
,
1
(
4
), p.
041301
. 10.1063/1.4900845
12.
Aymen
,
F.
,
2017
, “
Internal Fuzzy Hybrid Charger System for a Hybrid Electrical Vehicle
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012003
. 10.1115/1.4037352
13.
Panchal
,
S.
,
Dincer
,
I.
, and
Agelin-Chaab
,
M.
,
2015
, “
Thermodynamic Analysis of Hydraulic Braking Energy Recovery Systems for a Vehicle
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011601
. 10.1115/1.4031510
14.
Samuel
,
G. R.
,
2007
, “
Analysis of Energy Harvesting Positive Displacement Motor
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
360
363
. 10.1115/1.2794773
15.
Kim
,
H. W.
,
Batra
,
A.
,
Priya
,
S.
,
Uchino
,
K.
,
Markley
,
D.
,
Newnham
,
R. E.
, and
Hofmann
,
H. F.
,
2004
, “
"Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment
,”
Jpn. J. Appl. Phys.
,
43
(
9A
), pp.
6178
6183
. 10.1143/JJAP.43.6178
16.
Erturk
,
A.
,
Sodano
,
H. A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2008
, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure with an Application to UAVs
,”
J. Intel. Mat. Syst. Str.
,
20
(
5
), pp.
529
544
. 10.1177/1045389X08098096
17.
Guilar
,
N. J.
,
Hurst
,
P. J.
,
Amirtharajah
,
R.
,
Margolis
,
D. L.
, and
Horsley
,
D.
,
2008
, “
Interface Circuits for Multiphase Piezoelectric Energy Harvesters
,”
Applied Power Electronics Conference and Exposition
,
Austin, TX
,
Feb. 24–28
, pp.
638
644
.10.1109/APEC.2008.452278
18.
Yildirim
,
T.
,
Ghayesh
,
M. H.
,
Searle
,
T.
,
Li
,
W.
, and
Alici
,
G.
,
2017
, “
A Parametrically Broadband Nonlinear Energy Harvester
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032001
. 10.1115/1.4034514
19.
Singh
,
K. A.
,
Pathak
,
M.
,
Weber
,
R. J.
, and
Kumar
,
R.
,
2018
, “
A Self-Propelled Mechanism to Increase Range of Bistable Operation of a Piezoelectric Cantilever-Based Vibration Energy Harvester
,”
IEEE T. Ultrason. Ferr.
,
65
(
11
), pp.
2184
2194
. 10.1109/TUFFC.2018.2864998
20.
Shindo
,
Y.
, and
Narita
,
F.
,
2014
, “
Dynamic Bending/Torsion and Output Power of S-Shaped Piezoelectric Energy Harvesters
,”
Int. J. Mech. Mater. Des.
,
10
(
3
), pp.
305
311
. 10.1007/s10999-014-9247-0
21.
Chen
,
R.
,
Ren
,
L.
,
Xia
,
H.
,
Yuan
,
X.
, and
Liu
,
X.
,
2015
, “
Energy Harvesting Performance of a Dandelion-Like Multi-Directional Piezoelectric Vibration Energy Harvester
,”
Sens. Actuators, A
,
230
, pp.
1
8
. 10.1016/j.sna.2015.03.038
22.
Wu
,
H.
,
Saravanos
,
D.
,
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2012
, “
A Novel two-Degrees-of-Freedom Piezoelectric Energy Harvester
,”
J. Intel. Mat. Syst. Str.
,
24
(
3
), pp.
357
368
. 10.1177/1045389X12457254
23.
Zhao
,
L.
,
Tang
,
L.
, and
Yang
,
Y.
,
2014
, “
Enhanced Piezoelectric Galloping Energy Harvesting Using 2 Degree-of-Freedom Cut-Out Cantilever With Magnetic Interaction
,”
Jpn. J. Appl. Phys.
,
53
(
6
), p.
060302
. 10.7567/JJAP.53.060302
24.
Himelic
,
J. B.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicles for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031001
. 10.1115/1.4004151
25.
Esmaeeli
,
R.
,
Aliniagerdroudbari
,
H.
,
Hashemi
,
S. R.
,
Nazari
,
A.
,
Alhadri
,
M.
,
Zakri
,
W.
,
Mohammed
,
A. H.
,
Batur
,
C.
, and
Farhad
,
S.
,
2019
, “
A Rainbow Piezoelectric Energy Harvesting System for Intelligent Tire Monitoring Applications
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062007
. 10.1115/1.4042398
26.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intel. Mat. Syst. Str.
,
19
(
11
), pp.
1311
1325
. 10.1177/1045389X07085639
27.
Challa
,
V. R.
,
Prasad
,
M. G.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), pp.
01503
. 10.1088/0964-1726/17/01/015035
28.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
17
(
6
), p.
065016
. 10.1088/0964-1726/17/6/065016
29.
Hammad
,
B.
,
Abdelmoula
,
H.
,
Abdel-Rahman
,
E.
, and
Abdelkefi
,
A.
,
2019
, “
Nonlinear Analysis and Performance of Electret-Based Microcantilever Energy Harvesters
,”
Energies
,
12
(
22
), pp.
4249
. 10.3390/en12224249
30.
Tang
,
L.
, and
Wang
,
J.
,
2018
, “
Modeling and Analysis of Cantilever Piezoelectric Energy Harvester with a new-Type Dynamic Magnifier
,”
Acta Mech.
,
229
(
11
), pp.
4643
4662
. 10.1007/s00707-018-2250-z
31.
Yue
,
Y.
,
Hou
,
M.
, and
Zheng
,
X.
,
2017
, “
High Power Density in a Piezoelectric Energy Harvesting Ceramic by Optimizing the Sintering Temperature of Nanocrystalline Powders
,”
J. Eur. Ceram. Soc.
,
37
(
15
), pp.
4625
4630
. 10.1016/j.jeurceramsoc.2017.06.053
32.
Xu
,
S.
,
Hansen
,
B. J.
, and
Wang
,
Z.
,
2010
, “
Piezoelectric Nanowire-Enabled Power Source for Driving Wireless Microelectronics
,”
Nat. Nanotechnol.
,
1
(
1
), p.
93
. 10.1038/ncomms1098
You do not currently have access to this content.