Abstract

In the production and development of oil fields, production wells generally produce at a constant rate since the fixed production is easier to control than the fixed pressure. Thus, it is more feasible to use bottom-hole pressure data for connectivity analysis than historical injection and production data when producers are set in fixed rates. In this work, a practical procedure is proposed to infer inter-well connectivity based on the bottom-hole pressure data of injectors and producers. The procedure first preprocesses the bottom-hole pressure based on nonlinear diffusion filters to constitute the dataset for machine learning. An artificial neural network (ANN) is then generated and trained to simulate the connection relationship between the producer and its adjacent injectors. The genetic algorithm (GA) is also introduced to avoid the tedious process of determining time lags and other hyper-parameters of ANN. In particular, the time lag is normally determined by subjective judgment, which is optimized by GA for the first time. After optimizing the parameters, the sensitivity analysis is performed on the well-trained ANN to quantify inter-well connectivity. For the evaluation and verification purposes, the proposed GA and sensitivity analysis based ANN were applied to two synthetic reservoirs and one actual case from JD oilfields, China. The results show that the calculated connectivity conforms to known geological characteristics and tracer test results. And it demonstrates that the presented approach is an effective alternative way to characterize the reservoir connectivity and determine the flow direction of injected water.

References

1.
Wen
,
Z. G.
,
Zhu
,
D.
,
Li
,
Y. Q.
, and
Zhang
,
G. R.
,
2004
, “
Oil Layer Connectivity in the Sixth Block of Gudong Oilfield, the Evidence From Gas Chromatography Fingerprint Technique
,”
Pet. Explor. Dev.
,
31
(
1
), p.
2
. 10.3321/j.issn:1000-0747.2004.01.025
2.
Du
,
W. B.
,
Zhang
,
J. G.
, and
Hao
,
S. Z.
,
2002
, “
The Application of Pulse Well Tests for the Well Group of Forerunner Test of Tertiary Oil Recovery in Yumen Oilfield
,”
Well Testing
,
11
(
4
), pp.
32
33
. 10.3969/j.issn.1004-4388.2002.04.012
3.
Zhang
,
Y.
,
Jiang
,
R. Z.
, and
Zheng
,
X. Q.
,
2001
, “
Analysis Technology of Inter-Well Tracer
,”
J. China Univ. Pet. (Ed. Nat. Sci.)
,
25
(
2
), pp.
76
78
. 10.3321/j.issn:1000- 5870.2001.02.024
4.
Heffer
,
K. J.
,
Fox
,
R. J.
,
McGill
,
C. A.
, and
Koutsabeloulis
,
N. C.
,
1997
, “
Novel Techniques Show Links Between Reservoir Flow Directionality, Earth Stress, Fault Structure and Geomechanical Changes in Mature Waterfloods
,”
SPE J.
,
2
(
02
), pp.
91
98
. 10.2118/30711-PA
5.
Refunjol
,
B. T.
,
1996
, “
Reservoir Characterization of North Buck Draw Field Based on Tracer Response and Production-Injection Analysis
,”
Doctoral dissertation
,
University of Texas at Austin
,
Austin, TX
.
6.
Sant’Anna Pizarro
,
J. O. D.
,
1998
, “
Estimating Injectivity and Lateral Autocorrelation in Heterogeneous Media
,”
Doctoral dissertation
,
University of Texas at Austin
,
Austin, TX
.
7.
Soeriawinata
,
T.
, and
Kelkar
,
M.
,
1999
, “
Reservoir Management Using Production Data
,”
In SPE Mid-Continent Operations Symposium
,
Oklahoma City, Oklahoma
,
Mar. 28–31
.
8.
Tian
,
C.
, and
Horne
,
R. N.
,
2016
, “
Inferring Inter-Well Connectivity Using Production Data
,”
In SPE Annual Technical Conference and Exhibition
,
Dubai, UAE
,
26–28 Sept
.
9.
Albertoni
,
A.
, and
Lake
,
L. W.
,
2003
, “
Inferring Inter-Well Connectivity Only From Well-Rate Fluctuations in Waterfloods
,”
SPE Reserv. Eval. Eng.
,
6
(
01
), pp.
6
16
. 10.2118/83381-PA
10.
Tiab
,
D.
,
2007
, “
Inferring Inter-Well Connectivity From Well Bottom Hole Pressure Fluctuations in Waterfloods
,”
In Production and Operations Symposium
,
Oklahoma City, Oklahoma
,
Mar. 31–Apr. 3
.
11.
Yousef
,
A. A.
,
Gentil
,
P. H.
,
Jensen
,
J. L.
, and
Lake
,
L. W.
,
2005
, “
A Capacitance Model to Infer Inter-Well Connectivity From Production and Injection Rate Fluctuations
,”
SPE Reserv. Eval. Eng.
,
9
(
06
), pp.
630
646
. 10.2118/95322-PA
12.
Yousef
,
A. A.
,
Lake
,
L. W.
, and
Jensen
,
J. L.
,
2006
, “
Analysis and Interpretation of Inter-Well Connectivity From Production and Injection Rate Fluctuations Using a Capacitance Model
,”
In SPE/DOE Symposium on Improved Oil Recovery
,
Tulsa, Oklahoma
,
Apr. 22–26
.
13.
Mamghaderi
,
A.
,
Bastami
,
A.
, and
Pourafshary
,
P.
,
2013
, “
Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance–Resistive Model and Genetic Algorithm Method
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013102
. 10.1115/1.4007767
14.
Sayarpour
,
M.
,
Zuluaga
,
E.
,
Kabir
,
C. S.
, and
Lake
,
L. W.
,
2009
, “
The Use of Capacitance–Resistance Models for Rapid Estimation of Waterflood Performance and Optimization
,”
J. Pet. Sci. Eng.
,
69
(
3–4
), pp.
227
238
. 10.1016/j.petrol.2009.09.006
15.
Liang
,
X.
,
2010
, “
A Simple Model to Infer Inter-Well Connectivity Only From Well-Rate Fluctuations in Waterfloods
,”
J. Pet. Sci. Eng.
,
70
(
1–2
), pp.
35
43
. 10.1016/j.petrol.2009.08.016
16.
Cao
,
F.
,
2011
, “
A New Method of Data Quality Control in Production Data Using the Capacitance–Resistance Model
,”
Doctoral dissertation
,
University of Texas
,
Austin, TX
.
17.
Moreno
,
G. A.
, and
Lake
,
L. W.
,
2014
, “
Input Signal Design to Estimate Inter-Well Connectivities in Mature Fields From the Capacitance–Resistance Model
,”
Pet. Sci.
,
11
(
4
), pp.
563
568
. 10.1007/s12182-014-0372-z
18.
Kaviani
,
D.
,
Soroush
,
M.
, and
Jensen
,
J. L.
,
2014
, “
How Accurate Are Capacitance Model Connectivity Estimates
,”
J. Pet. Sci. Eng.
,
122
, pp.
439
452
. 10.1016/j.petrol.2014.08.003
19.
Yin
,
Z.
,
MacBeth
,
C.
,
Chassagne
,
R.
, and
Vazquez
,
O.
,
2016
, “
Evaluation of Inter-Well Connectivity Using Well Fluctuations and 4D Seismic Data
,”
J. Pet. Sci. Eng.
,
145
, pp.
533
547
. 10.1016/j.petrol.2016.06.021
20.
Lesan
,
A.
,
Eshraghi
,
S. E.
,
Bahroudi
,
A.
,
Rasaei
,
M. R.
, and
Rahami
,
H.
,
2018
, “
State-of-the-Art Solution of Capacitance–Resistance Model by Considering Dynamic Time Constants as a Realistic Assumption
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012904
. 10.1115/1.4037368
21.
Prakasa
,
B.
,
Shi
,
X.
,
Muradov
,
K.
, and
Davies
,
D.
,
2017
, “
Novel Application of Capacitance
Resistance Model for Reservoir Characterisation and Zonal, Intelligent Well Control
,”
In SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition
,
Jakarta, Indonesia
,
Oct. 17–19
.
22.
Kaviani
,
D.
,
Valko
,
P. P.
, and
Jensen
,
J. L.
,
2010
, “
Application of the Multiwell Productivity Index-Based Method to Evaluate Inter-Well Connectivity
,”
In SPE Improved Oil Recovery Symposium
,
Tulsa, Oklahoma
,
24–28 Apr
.
23.
Liu
,
F.
,
Mendel
,
J. M.
, and
Nejad
,
A. M.
,
2009
, “
Forecasting Injector-Producer Relationships From Production and Injection Rates Using an Extended Kalman Filter
,”
SPE J.
,
14
(
04
), pp.
653
664
. 10.2118/110520-PA
24.
Panda
,
M. N.
, and
Chopra
,
A. K.
,
1998
, “
An Integrated Approach to Estimate Well Interactions
,”
SPE India Oil and Gas Conference and Exhibition
,
New Delhi, India
,
Feb. 17–19
.
25.
Demiryurek
,
U.
,
Banaei-Kashani
,
F.
,
Shahabi
,
C.
, and
Wilkinson
,
F. G.
,
2008
, “
Neural-Network Based Sensitivity Analysis for Injector-Producer Relationship Identification
,”
In Intelligent Energy Conference and Exhibition
,
Amsterdam, Netherlands
,
Feb. 25–27
.
26.
Kim
,
T. H.
,
2019
, “
Improvement of Reservoir Management Efficiency Using Stochastic Capacitance–Resistance Model
,”
In SPE Western Regional Meeting
,
San Jose, California
,
Apr. 23–26
.
27.
Naudomsup
,
N.
, and
Lake
,
L. W.
,
2019
, “
Extension of Capacitance/Resistance Model to Tracer Flow for Determining Reservoir Properties
,”
SPE Reserv. Eval. Eng.
,
22
(
01
), pp.
266
281
. 10.2118/187410-PA
28.
Salehian
,
M.
, and
Çınar
,
M.
,
2019
, “
Reservoir Characterization Using Dynamic Capacitance–Resistance Model With Application to Shut-in and Horizontal Wells
,”
J. Pet. Explor. Prod. Technol.
,
9
(
4
), pp.
2811
2830
. 10.1007/s13202-019-0655-4
29.
Najib
,
A.
,
Zarrella
,
A.
,
Narayanan
,
V.
,
Grant
,
P.
, and
Harrington
,
C.
,
2019
, “
A Revised Capacitance–Resistance Model for Large Diameter Shallow Bore Ground Heat Exchanger
,”
Appl. Therm. Eng.
,
162
, p.
114305
. 10.1016/j.applthermaleng.2019.114305
30.
Mamghaderi
,
A.
,
Aminshahidy
,
B.
, and
Bazargan
,
H.
,
2020
, “
Error Behavior Modeling in Capacitance–Resistance Model: A Promotion to Fast, Reliable Proxy for Reservoir Performance Prediction
,”
J. Nat. Gas Sci. Eng.
,
77
, p.
103228
. 10.1016/j.jngse.2020.103228
31.
Carpenter
,
C.
,
2020
, “
Capacitance–Resistance Model Used for Integrated Detection of Water Production
,”
J. Pet. Technol.
,
72
(
01
), pp.
51
52
. 10.2118/0120-0051-JPT
32.
Artun
,
E.
,
2017
, “
Characterizing Inter-Well Connectivity in Waterflooded Reservoirs Using Data- Driven and Reduced-Physics Models: A Comparative Study
,”
Neural Comput. Appl.
,
28
(
7
), pp.
1729
1743
. 10.1007/s00521-015-2152-0
33.
Mohaghegh
,
S. D.
,
2011
, “
Reservoir Simulation and Modeling Based on Artificial Intelligence and Data Mining (AI&DM)
,”
J. Nat. Gas Sci. Eng.
,
3
(
6
), pp.
697
705
. 10.1016/j.jngse.2011.08.003
34.
Hasan
,
A. R.
, and
Kabir
,
C. S.
,
1985
, “
Determining Bottom-Hole Pressures in Pumping Wells
,”
Soc. Pet. Eng. J.
,
25
(
06
), pp.
823
838
. 10.2118/11580-PA
35.
Ma
,
Z.
,
Leung
,
J. Y.
, and
Zanon
,
S.
,
2017
, “
Practical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032909
. 10.1115/1.4035751
36.
Stoisits
,
R. F.
,
Crawford
,
K. D.
,
MacAllister
,
D. J.
,
McCormack
,
M. D.
,
Lawal
,
A. S.
, and
Ogbe
,
D. O.
,
1999
, “
Production Optimization at the Kuparuk River Field Utilizing Neural Networks and Genetic Algorithms
,”
In SPE Mid-Continent Operations Symposium
,
Oklahoma City, Oklahoma
,
Mar. 28–31
.
37.
Olivares Velazquez
,
G. J.
,
Escalona Quintero
,
C. J.
, and
Gimenez
,
E. R.
,
2012
, “
Production Monitoring Using Artificial Intelligence
,”
In SPE Intelligent Energy International
,
Utrecht, Netherlands
,
Mar. 27–29
.
38.
Weiss
,
W. W.
,
Balch
,
R. S.
, and
Stubbs
,
B. A.
,
2002
, “
How Artificial Intelligence Methods Can Forecast Oil Production
,”
In SPE/DOE Improved Oil Recovery Symposium
,
Tulsa, Oklahoma
,
Apr. 13–17
.
39.
Khamehchi
,
E.
,
Kivi
,
I. R.
, and
Akbari
,
M.
,
2014
, “
A Novel Approach to Sand Production Prediction Using Artificial Intelligence
,”
J. Pet. Sci. Eng.
,
123
, pp.
147
154
. 10.1016/j.petrol.2014.07.033
40.
Li
,
X.
,
Chan
,
C. W.
, and
Nguyen
,
H. H.
,
2013
, “
Application of the Neural Decision Tree Approach for Prediction of Petroleum Production
,”
J. Pet. Sci. Eng.
,
104
, pp.
11
16
. 10.1016/j.petrol.2013.03.018
41.
Awoleke
,
O.
, and
Lane
,
R.
,
2011
, “
Analysis of Data From the Barnett Shale Using Conventional Statistical and Virtual Intelligence Technique
,”
SPE Reserv. Eval. Eng.
,
14
(
05
), pp.
544
556
. 10.2118/127919-PA
42.
Negash
,
B. M.
, and
Yaw
,
A. D.
,
2020
, “
Artificial Neural Network Based Production Forecasting for a Hydrocarbon Reservoir Under Water Injection
,”
Pet. Explor. Dev.
,
47
(
2
), pp.
383
392
. 10.1016/S1876-3804(20)60055-6
43.
Manshad
,
A. K.
,
Rostami
,
H.
,
Rezaei
,
H.
, and
Hosseini
,
S. M.
,
2015
, “
Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Asphaltene Precipitation During gas Injection Process and Comparison With Gaussian Process Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062904
. 10.1115/1.4031042
44.
Elkatatny
,
S.
,
2017
, “
Real-Time Prediction of Rheological Parameters of KCL Water-Based Drilling Fluid Using Artificial Neural Networks
,”
Arabian J. Sci. Eng.
,
42
(
4
), pp.
1655
1665
. 10.1007/s13369-016-2409-7
45.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution
,”
J. Mol. Liq.
,
255
, pp.
375
383
. 10.1016/j.molliq.2017.11.156
46.
Foroud
,
T.
,
Seifi
,
A.
, and
AminShahidi
,
B.
,
2014
, “
Assisted History Matching Using Artificial Neural Network Based Global Optimization Method—Applications to Brugge Field and a Fractured Iranian Reservoir
,”
J. Pet. Sci. Eng.
,
123
, pp.
46
61
. 10.1016/j.petrol.2014.07.034
47.
Shahkarami
,
A.
,
Mohaghegh
,
S. D.
,
Gholami
,
V.
, and
Haghighat
,
S. A.
,
2014
, “
Artificial Intelligence (AI) Assisted History Matching
,”
In SPE Western North American and Rocky Mountain Joint Meeting
,
Denver, CO
,
Apr. 17–18
.
48.
Saggaf
,
M. M.
, and
Nebrija
,
E. L.
,
2000
, “
Estimation of Lithologies and Depositional Facies From Wire-Line Logs
,”
AAPG Bulletin
,
84
(
10
), pp.
1633
1646
. 10.1306/8626BF1F-173B-11D7-8645000102C1865D
49.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
. 10.1115/1.4039270
50.
Ertekin
,
T.
,
2007
, “
Neuro-Simulation Analysis of Pressure Maintenance Operations in Gas Condensate Reservoirs
,”
J. Pet. Sci. Eng.
,
58
(
1–2
), pp.
207
226
. 10.1016/j.petrol.2006.12.006
51.
Wang
,
Y.
, and
Salehi
,
S.
,
2015
, “
Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062903
. 10.1115/1.4030847
52.
Le Van
,
S.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
. 10.1115/1.4038054
53.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
. 10.1115/1.4039446
54.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real-Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032908
. 10.1115/1.4042233
55.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
56.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
. 10.1115/1.4042408
57.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
,
Adam: A Method for Stochastic Optimization
.
arXiv preprint arXiv:1412.6980
.http://arxiv.org/abs/1412.6980
You do not currently have access to this content.