Abstract

Shale gas well deliverability and economics depend on extremely low permeability that is not only dependent on the rock bedding trend but also controlled by in situ stresses. The purpose of this study was to determine relative contributions of normal and tangential stresses with respect to the rock bedding plane on permeability evolution of shale. The study involved an analysis of the rock bedding structure, followed by triaxial testing of rock samples and theoretical modeling. Also simulated were the effects of stress-bedding and load cycling. The results showed shale permeability reduction during the stress loading process and its gradual recovery during the unloading process. Permeability change was more pronounced in response to normal stress but some effects of the tangential stresses were also observed. Moreover, a theoretical model was derived to describe permeability change with effective stress in the presence of normal and tangential stresses. The model was empirically matched with the experimental results. The assessment of relative contributions of normal and tangential stresses was quantified with the analysis of variance (ANOVA). The analysis revealed significance levels of normal stress, and two tangential stresses σt1 and σt2 on shale permeability as 81%, 5%, and 14%, respectively. An almost 20-percent contribution of tangential stress loading to permeability response indicates a need for the improvement in computing effective stress. Therefore, a new method was suggested to determine effective stress when predicting permeability evolution of shale.

References

References
1.
Loucks
,
R. G.
, and
Ruppel
,
S. C.
,
2007
, “
Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas
,”
AAPG Bull.
,
91
(
4
), pp.
579
601
. 10.1306/11020606059
2.
Johnson
,
C.
, and
Boersma
,
T.
,
2013
, “
Energy (in) Security in Poland the Case of Shale Gas
,”
Energy Policy
,
53
, pp.
389
399
. 10.1016/j.enpol.2012.10.068
3.
Sun
,
H.
,
Yao
,
J.
,
Fan
,
D.
,
Wang
,
C.
, and
Sun
,
Z.
,
2015
, “
Gas Transport Mode Criteria in Ultra-Tight Porous Media
,”
Int. J. Heat Mass Transfer
,
83
, pp.
192
199
. 10.1016/j.ijheatmasstransfer.2014.11.075
4.
Letham
,
E. A.
, and
Bustin
,
R. M.
,
2016
, “
The Impact of Gas Slippage on Permeability Effective Stress Laws: Implications for Predicting Permeability of Fine-Grained Lithologies
,”
Int. J. Coal Geol.
,
167
, pp.
93
102
. 10.1016/j.coal.2016.09.015
5.
Dong
,
J. J.
,
Hsu
,
J. Y.
,
Wu
,
W. J.
,
Shimamoto
,
T.
,
Hung
,
J. H.
,
Yeh
,
E. C.
,
Wu
,
Y. H.
, and
Sone
,
H.
,
2010
, “
Stress-Dependence of the Permeability and Porosity of Sandstone and Shale From TCDP Hole-A
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
7
), pp.
1141
1157
. 10.1016/j.ijrmms.2010.06.019
6.
Ghanizadeh
,
A.
,
Gasparik
,
M.
,
Amann-Hildenbrand
,
A.
,
Gensterblum
,
Y.
, and
Krooss
,
B. M.
,
2014
, “
Experimental Study of Fluid Transport Processes in the Matrix System of the European Organic-Rich Shales: I. Scandinavian Alum Shale
,”
Mar. Pet. Geol.
,
51
, pp.
79
99
. 10.1016/j.marpetgeo.2013.10.013
7.
Ghanizadeh
,
A.
,
Amann-Hildenbrand
,
A.
,
Gasparik
,
M.
,
Gensterblum
,
Y.
,
Krooss
,
B. M.
, and
Littke
,
R.
,
2014
, “
Experimental Study of Fluid Transport Processes in the Matrix System of the European Organic-Rich Shales: II. Posidonia Shale (Lower Toarcian, Northern Germany)
,”
Int. J. Coal Geol.
,
123
, pp.
20
33
. 10.1016/j.coal.2013.06.009
8.
Soeder
,
D. J.
,
1988
, “
Porosity and Permeability of Eastern Devonian Gas Shale
,”
SPE Form. Eval.
,
3
(
1
), pp.
116
124
. 10.2118/15213-PA
9.
Heller
,
R.
,
Vermylen
,
J.
, and
Zoback
,
M.
,
2014
, “
Experimental Investigation of Matrix Permeability of Gas Shales
,”
AAPG Bull.
,
98
(
5
), pp.
975
995
. 10.1306/09231313023
10.
Li
,
Z.
,
Wei
,
C.
,
Leung
,
J.
,
Wang
,
Y.
, and
Song
,
H.
,
2015
, “
Numerical and Experimental Study on Gas Flow in Nanoporous Media
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
738
744
. 10.1016/j.jngse.2015.09.014
11.
Wang
,
S.
,
Song
,
Z.
,
Cao
,
T.
, and
Song
,
X.
,
2013
, “
The Methane Sorption Capacity of Paleozoic Shales From the Sichuan Basin. China
,”
Mar. Pet. Geol.
,
44
, pp.
112
119
. 10.1016/j.marpetgeo.2013.03.007
12.
Long
,
P.
,
Zhang
,
J.
,
Li
,
Y.
,
Tang
,
X.
,
Cheng
,
L.
,
Liu
,
Z.
, and
Han
,
S.
,
2012
, “
Reservoir-forming Conditions and Strategic Select Favorable Area of Shale Gas in the Lower Paleozoic of Chongqing and Its Adjacent Areas
,”
Front. Earth Sci.
,
19
, pp.
221
233
.
13.
Dai
,
J.
,
Zou
,
C.
,
Liao
,
S.
,
Dong
,
D.
,
Ni
,
Y.
,
Huang
,
J.
,
Wu
,
W.
,
Gong
,
D.
,
Huang
,
S.
, and
Hu
,
G.
,
2014
, “
Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin
,”
Org. Geochem.
,
74
, pp.
3
12
. 10.1016/j.orggeochem.2014.01.018
14.
Luo
,
Q.
,
Zhong
,
N.
,
Dai
,
N.
, and
Zhang
,
W.
,
2016
, “
Graptolite-Derived Organic Matter in the Wufeng–Longmaxi Formations (Upper Ordovician–Lower Silurian) of Southeastern Chongqing, China: Implications for Gas Shale Evaluation
,”
Int. J. Coal Geol.
,
153
, pp.
87
98
. 10.1016/j.coal.2015.11.014
15.
Yang
,
R.
,
He
,
S.
,
Hu
,
Q.
,
Hu
,
D.
, and
Yi
,
J.
,
2017
, “
Geochemical Characteristics and Origin of Natural Gas From Wufeng-Longmaxi Shales of the Fuling Gas Field, Sichuan Basin (China)
,”
Int. J. Coal Geol.
,
171
, pp.
1
11
. 10.1016/j.coal.2016.12.003
16.
Meng
,
Q.
,
Wang
,
E.
, and
Hu
,
J.
,
2005
, “
Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block
,”
Geol. Soc. Am. Bull.
,
117
(
3
), pp.
396
410
. 10.1130/B25407.1
17.
Li
,
M.
,
Yin
,
G.
,
Xu
,
J.
,
Li
,
W.
,
Song
,
Z.
, and
Jiang
,
C.
,
2016
, “
A Novel True Triaxial Apparatus to Study the Geomechanical and Fluid Flow Aspects of Energy Exploitations in Geological Formations
,”
Rock Mech. Rock Eng.
,
49
(
12
), pp.
4647
4659
. 10.1007/s00603-016-1060-7
18.
Hildenbrand
,
A.
,
Schlömer
,
S.
, and
Krooss
,
B. M.
,
2002
, “
Gas Breakthrough Experiments on Fine-Grained Sedimentary Rocks
,”
Geofluids
,
2
(
1
), pp.
3
23
. 10.1046/j.1468-8123.2002.00031.x
19.
Wang
,
Z.
,
2013
, “
The Progress of the Exploitation Technology of Shale Gas in China
,”
Sino-Global Energy
,
18
(
2
), pp.
23
31
.
20.
Loucks
,
R. G.
,
Reed
,
R. M.
,
Ruppel
,
S. C.
, and
Hammes
,
U.
,
2012
, “
Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores
,”
AAPG Bull.
,
96
(
6
), pp.
1071
1098
. 10.1306/08171111061
21.
Chen
,
D.
,
Pan
,
Z.
, and
Ye
,
Z.
,
2015
, “
Dependence of Gas Shale Fracture Permeability on Effective Stress and Reservoir Pressure: Model Match and Insights
,”
Fuel
,
139
, pp.
383
392
. 10.1016/j.fuel.2014.09.018
22.
Pan
,
Z.
,
Connell
,
L. D.
, and
Camilleri
,
M.
,
2010
, “
Laboratory Characterisation of Coal Reservoir Permeability for Primary and Enhanced Coalbed Methane Recovery
,”
Int. J. Coal Geol.
,
82
(3–
4
), pp.
252
261
. 10.1016/j.coal.2009.10.019
23.
McKee
,
C. R.
,
Bumb
,
A. C.
, and
Koenig
,
R. A.
, “
Stress-Dependent Permeability and Porosity of Coal and Other Geologic Formations
,”
SPE Form. Eval.
,
3
(
1
), pp.
81
91
. 10.2118/12858-PA
24.
Li
,
J.
,
Guo
,
B.
, and
Feng
,
Y.
,
2014
, “
An Analytical Solution of Fracture-Induced Stress and Its Application in Shale Gas Exploitation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
023102
. 10.1115/1.4025714
25.
Abugharara
,
A. N.
,
Mohamed
,
B.
,
Hurich
,
C.
,
Molgaard
,
J.
, and
Butt
,
S. D.
,
2019
, “
Experimental Investigation of the Effect of Shale Anisotropy Orientation on the Main Drilling Parameters Influencing Oriented Drilling Performance in Shale
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102904
. 10.1115/1.4043435
26.
Bhandari
,
A. R.
,
Flemings
,
P. B.
,
Polito
,
P. J.
,
Cronin
,
M. B.
, and
Bryant
,
S. L.
,
2015
, “
Anisotropy and Stress Dependence of Permeability in the Barnett Shale
,”
Transp. Porous Media
,
108
(
2
), pp.
393
411
. 10.1007/s11242-015-0482-0
27.
Chalmers
,
G. R. L.
,
Ross
,
D. J. K.
, and
Bustin
,
R. M.
,
2012
, “
Geological Controls on Matrix Permeability of Devonian Gas Shales in the Horn River and Liard Basins, Northeastern British Columbia, Canada
,”
Int. J. Coal Geol.
,
103
, pp.
120
131
. 10.1016/j.coal.2012.05.006
28.
Revil
,
A.
,
Woodruff
,
W. F.
,
Torres-Verdín
,
C.
, and
Prasad
,
M.
,
2013
, “
Complex Conductivity Tensor of Anisotropic Hydrocarbon-Bearing Shales and Mudrock
,”
Geophysics
,
78
(
6
), pp.
403
418
. 10.1190/geo2013-0100.1
29.
Bilgiç-Keleş
,
S.
,
Şahin-Yeşilçubuk
,
N.
,
Barla-Demirkoz
,
A.
, and
Karakaş
,
M.
,
2019
, “
Response Surface Optimization and Modelling for Supercritical Carbon Dioxide Extraction of Echium Vulgare Seed Oil
,”
J. Supercrit. Fluids
,
143
, pp.
365
369
. 10.1016/j.supflu.2018.09.008
30.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanlı
,
A.
,
Karaoglan
,
A. D.
,
Okkan
,
U.
, and
Kocak
,
M. S.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Hazelnut Oil Methyl Ester: The Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
. 10.1115/1.4032941
31.
Fjar
,
E.
,
Holt
,
R. M.
,
Horsrud
,
P.
,
Raaen
,
A. M.
, and
Risnes
,
R.
,
2008
,
Petroleum Related Rock Mechanics
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
You do not currently have access to this content.