Calculation process of some reservoir engineering problems involves several passes of full-order numerical reservoir simulations, and this makes it a time-consuming process. In this study, a fast method based on proper orthogonal decomposition (POD) was developed to predict flow and heat transfer of oil and water in a reservoir. The reduced order model for flow and heat transfer of oil and water in the hot water-drive reservoir was generated. Then, POD was used to extract a reduced set of POD basis functions from a series of “snapshots” obtained by a finite difference method (FDM), and these POD basis functions most efficiently represent the dynamic characteristics of the original physical system. After injection and production parameters are changed constantly, the POD basis functions combined with the reduced order model were used to predict the new physical fields. The POD-based method was approved on a two-dimensional hot water-drive reservoir model. For the example of this paper, compared with FDM, the prediction error of water saturation and temperature fields were less than 1.3% and 1.5%, respectively; what is more, it was quite fast, where the increase in calculation speed was more than 70 times.

References

References
1.
Ronaldo
,
V.
,
Cem
,
S.
, and
Turgay
,
E.
,
2004
, “
A Numerical Model Coupling Reservoir and Horizontal Well Flow Dynamics—Applications in Well Completions, and Production Logging
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
169
176
.
2.
Hossein
,
J.
, and
Faruk
,
C.
,
2005
, “
Damage Tolerance of Well-Completion and Stimulation Techniques in Coalbed Methane Reservoirs
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
248
256
.
3.
Sarma
,
P.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
,
2008
, “
Computational Techniques for Closed-Loop Reservoir Modeling With Application to a Realistic Reservoir
,”
Pet. Sci. Technol.
,
26
(
10–11
), pp.
1120
1140
.
4.
Vlcker
,
C.
,
Jrgensen
,
J. B.
, and
Stenby
,
E. H.
,
2011
, “
Oil Reservoir Production Optimization Using Optimal Control
,”
50th IEEE Conference on Decision and Control
,
Orlando, FL
,
Dec. 12–15
, Paper No. 7937-7943.
5.
Wang
,
Z.
,
Shen
,
R.
,
Wang
,
K.
,
Lan
,
H.
,
Qiao
,
L.
, and
Dong
,
S.
,
2012
, “
Dynamic Optimization Techniques of Smart Wells Using Optimal Control Theory
,”
Acta Petrolei Sinica
,
33
(
5
), pp.
887
891
.
6.
Eissa
,
M.
, and
El-m
,
S.
,
2008
, “
Dewpoint Pressure Model for Gas Condensate Reservoirs Based on Genetic Programming
,”
Energy Fuels
,
22
(
5
), pp.
3194
3200
.
7.
Wang
,
W.
,
Mohammad
,
S.
, and
Su
,
Y.
,
2017
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012905
.
8.
Majid
,
S.
,
Mohammad
,
R.
, and
Ali
,
N.
,
2016
, “
Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
052903
.
9.
Byeongcheol
,
K.
,
Hyungjun
,
Y.
,
Kyungbook
,
L.
, and
Jonggeun
,
C.
,
2017
, “
Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
032907
.
10.
Hamidreza
,
Y.
,
Mohammad
,
M. G.
, and
Amir
,
H. M.
,
2018
, “
Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution
,”
J. Mol. Liq.
,
255
(
4
), pp.
375
383
.
11.
Hamidreza
,
Y.
,
Mohammad
,
M. G.
, and
Amir
,
H. M.
,
2018
, “
Determination of the Gas Hydrate Formation Limits to Isenthalpic Joule–Thomson Expansions
,”
Chem. Eng. Res. Des.
,
132
(
4
), pp.
208
214
.
12.
Asheim
,
H.
,
1988
, “
Maximization of Water Sweep Efficiency by Controlling Production and Injection Rates
,”
European Petroleum Conference
,
London, United Kingdom
,
Oct. 16–19
, Paper No. SPE-18365-MS.
13.
Brouwer
,
D.
, and
Jasen
,
D.
,
2002
, “
Dynamic Optimization of Water Flooding With Smart Wells Using Optimal Control Theory
,”
European Petroleum Conference
,
Aberdeen, United Kingdom
,
Oct. 29–31
, Paper No. SPE-78278-MS.
14.
Lorentzen
,
R.
,
Berg
,
A.
,
Naevdal
,
G.
, and
Vefring
,
E.
,
2006
, “
A New Approach for Dynamic Optimization of Water Flooding Problems
,”
Intelligent Energy Conference and Exhibition
,
Amsterdam, Netherlands
,
Apr. 11–13
, Paper No. SPE-99690-MS.
15.
Kraaijevanger
,
J.
,
Egberts
,
P.
,
Valstar
,
J.
, and
Buurman
,
H.
,
2007
, “
Optimal Waterflood Design Using the Adjoint Method
,”
SPE Reservoir Simulation Symposium
,
Houston, TX
,
Feb. 26–28
, Paper No. SPE-105764-MS.
16.
Doublet
,
D.
,
Aanonsen
,
S.
, and
Tai
,
X.
,
2009
, “
An Efficient Method for Smart Well Production Optimization
,”
J. Pet. Sci. Eng.
,
69
(
1
), pp.
25
39
.
17.
Jansen
,
J.
,
2011
, “
Adjoint-Based Optimization of Multi-Phase Flow Through Porous Media—A Review
,”
Comput. Fluids
,
46
(
1
), pp.
40
51
.
18.
Forouzanfar
,
F.
,
Della
,
R.
,
Russo
,
R.
, and
Reynolds
,
A. C.
,
2013
, “
Life-Cycle Production Optimization of an Oil Field With an Adjoint-Based Gradient Approach
,”
J. Pet. Sci. Eng.
,
112
(
12
), pp.
351
358
.
19.
Mieie
,
A.
,
Pritchard
,
R. E.
, and
Damoulakis
,
J. N.
,
1970
, “
Sequential Gradient-Restoration Algorithm for Optimal Control Problems
,”
J. Optim. Theory Appl.
,
5
(
4
), pp.
235
282
.
20.
Sarma
,
P.
,
Aziz
,
K.
, and
Durlofsky
,
L. J.
,
2005
, “
Implementation of Adjoint Solution for Optimal Control of Smart Wells
,”
SPE Reservoir Simulation Symposium
,
Houston, TX
,
Jan. 31–Feb. 2
, Paper No. SPE-92864-MS.
21.
Sarma
,
P.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
, and
Chen
,
W.
,
2006
, “
Efficient Real-Time Reservoir Management Using Adjoint-Based Optimal Control and Model Updating
,”
Comput. Geosci.
,
10
(
1
), pp.
3
36
.
22.
Zhang
,
K.
,
Yao
,
J.
,
Zhang
,
L.
, and
Li
,
Y.
,
2011
, “
Dynamic Real-Time Optimization of Reservoir Production
,”
J. Comput.
,
6
(
3
), pp.
610
617
.
23.
Le maitre
,
O. P.
, and
Mathelin
,
L.
,
2010
, “
Equation-Free Model Reduction for Complex Dynamical Systems
,”
Int. J. Numer. Methods Fluids
,
63
(
2
), pp.
163
184
.
24.
Noack
,
B. R.
,
Schiegel
,
M.
,
Morzynski
,
M.
, and
Tadmor
,
G.
,
2010
, “
System Reduction Strategy for Galerkin Models of Fluid Flows
,”
Int. J. Numer. Methods Fluids
,
63
(
2
), pp.
231
248
.
25.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.
26.
Moore
,
B.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
Trans. Automat. Contr.
,
26
(
1
), pp.
17
32
.
27.
Schlegel
,
M.
,
Noack
,
B. R.
,
Comte
,
P.
,
Kolomenskiy
,
D.
,
Schneider
,
K.
,
Farge
,
M.
,
Luchtenburg
,
D.
,
Scouten
,
J.
, and
Tadmor
,
M.
,
2009
, “
Reduced-Order Modelling of Turbulent Jets for Noise Control
,”
Numer. Simul. Turbul. Flows Noise Gener.
,
104
, pp.
3
27
.
28.
Du
,
J.
,
Zhu
,
J.
,
Luo
,
Z.
, and
Navon
,
I.
,
2011
, “
An Optimizing Finite Difference Scheme Based on Proper Orthogonal Decomposition for CVD Equations
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
1
), pp.
78
94
.
29.
Kunisch
,
K.
, and
Volkwein
,
S.
,
2002
, “
Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics
,”
SIAM J. Numer. Anal.
,
40
(
2
), pp.
492
515
.
30.
Weller
,
J.
,
Lombardi
,
E.
,
Bergmann
,
M.
, and
Iollo
,
A.
,
2010
, “
Numerical Methods for Low-Order Modeling of Fluid Flows Based on POD
,”
Int. J. Numer. Methods Fluids
,
63
(
2
), pp.
249
268
.
31.
Banks
,
H. T.
,
Joyner
,
M. L.
,
Wincheski
,
B.
, and
Winfree
,
W. P.
,
2000
, “
Nondestructive Evaluation Using a Reduced-Order Computational Methodology
,”
Inverse Probl.
,
16
(
4
), p.
929
.
32.
Ding
,
P.
, and
Tao
,
W.
,
2009
, “
An Inverse Analysis for the Estimation of Boundary Heat Flux in a Circular Pipe Employing the Proper Orthogonal Decomposition
,”
Prog. Comput. Fluid Dyn.
,
9
(
3
), pp.
231
246
.
33.
Ravindran
,
S. S.
,
2000
, “
A Reduced-Order Approach for Optimal Control of Fluids Using Proper Orthogonal Decomposition
,”
Int. J. Numer. Methods Fluids
,
34
(
5
), pp.
425
448
.
34.
Ly
,
H. V.
, and
Tran
,
H. T.
,
2001
, “
Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition
,”
Math. Comput. Model.
,
33
(
1
), pp.
223
236
.
35.
Volkwein
,
S.
,
2001
, “
Optimal Control of a Phase-Field Model Using Proper Orthogonal Decomposition
,”
J. Appl. Math. Mech.
,
81
(
2
), pp.
83
97
.
36.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
37.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
38.
Jansen
,
J.
,
Bosgra
,
O.
, and
Van
,
P.
,
2008
, “
Model-Based Control of Multiphase Flow in Subsurface Oil Reservoirs
,”
J. Process Contr.
,
18
(
9
), pp.
846
855
.
You do not currently have access to this content.