Abstract

This paper designs a hydraulic vibration energy recovery system of speed bump that can recover vehicle vibration energy while decelerating the vehicle. Using hydraulic fluid as the energy recovery medium for deceleration, according to the speed range of vehicles passing through the speed bump, a design scheme for the hydraulic vibration energy recovery device for speed bump with a combination of split generation and continuous generation is proposed. Based on the coupling characteristics of the vehicle-speed bump-hydraulic transducer at different speeds of the vehicle, a joint simulation model was established to study the speed bump power generation module. Based on the simulation results, the hydraulic system operating parameters and component types were determined. Finally, a simulation test was conducted on an improved test-bed to test the power generation capability of the system.

References

References
1.
Parker
,
A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022203
. 10.1115/1.4005699
2.
Yinsan
,
C.
, and
Lang
,
W.
,
2005
, “
Research on Safety Measures for Highway Forced Speed Control
,”
J. High. Transp. Res. Dev.
,
22
(
10
), pp.
140
143
.
3.
Hetmanczyk
,
M. P.
, and
Michalski
,
P.
,
2015
, “
The Qualitative Assessment of Pneumatic Actuators Operation in Terms of Vibration Criteria
,”
ASME J. Energy Resour. Technol.
,
95
(
1
), p.
012056
. 10.1088/1757-899x/95/1/012056
4.
Li
,
Y.W.
,
Chen
,
S.
,
Wang
,
Z.H.
,
Liu
,
Z.S.
, and
Feng
,
D.J.
,
2015
, “
Current Status and Development of Intelligent Power Generation Pavement Technology
,”
Mater. Rev.
,
29
(
7
), pp.
100
106
.
5.
Duarte
,
F.
, and
Ferreira
,
A.
,
2016
, “
Energy Harvesting on Road Pavements: State of the Art
,”
Proc. Inst. Civ. Eng.: Energy
,
169
(
2
), pp.
79
90
. 10.1680/jener.15.00005
6.
Pirisi
,
A.
,
Grimaccia
,
F.
,
Mussetta
,
M.
, and
Zich
,
R. E.
,
2012
, “
Novel Speed Bumps Design and Optimization for Vehicles’ Energy Recovery in Smart Cities
,”
Energies
,
5
(
11
), pp.
4624
4642
. 10.3390/en5114624
7.
Near
,
C. D.
,
2013
, “
Power Generator
,” U.S., Patent No. 20,130,207,520.
8.
Todaria
,
P.
,
2015
, “
Design, Modeling and Test of a Novel Speed Bump Energy Harvester
,”
Proc. SPIE-Int. Soc. Opt. Eng.
,
94
(
12
), pp.
506
520
.
9.
Ting
,
C. C.
,
Tsai
,
D. Y.
, and
Hsiao
,
C. C.
,
2012
, “
Developing a Mechanical Roadway System for Waste Energy Capture of Vehicles and Electric Generation
,”
Appl. Energy
,
92
(
2
), pp.
1
8
. 10.1016/j.apenergy.2011.10.006
10.
Zhang
,
X.T.
,
Zhang
,
Z.T.
,
Meng
,
G.J.
, and
Luo
,
D.Y.
,
2015
, “
Design, Modeling, Simulation of a Novel Mechanical Road Tunnel Energy Harvesting System with Hydraulic Transaction
,”
IEEE International Conference on Information and Automation
,
Lijing, China
,
August, IEEE, New York, pp. 726–730
.
11.
Kutlu
,
B.
,
Takach
,
N.
,
Ozbayoglu
,
E. M.
,
Miska
,
S. Z.
,
Yu
,
M.
,
Mata
,
C.
,
2017
, “
Drilling Fluid Density and Hydraulic Drag Reduction With Glass Bubble Additives
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042904
. 10.1115/1.4036540
12.
Melamed
,
Y.
,
Kiselev
,
A.
,
Gelfgat
,
M.
,
Dreesen
,
D.
,
Blacic
,
J.
,
1999
, “
Hydraulic Hammer Drilling Technology: Developments and Capabilities
,”
ASME J. Energy Resour. Technol.
,
122
(
1
), pp.
1
7
. 10.1115/1.483154
13.
Lee
,
T. S.
,
Advani
,
S. H.
, and
Pak
,
C. K.
,
1994
, “
Three-Dimensional Hydraulic Fracture Simulation Using Fixed Grid Finite Element Algorithms
,”
ASME J. Energy Resour. Technol.
,
116
(
1
), pp.
2
4
. 10.1115/1.2906006
14.
Gao
,
Q.
, Cheng
,
Y.
, Yan
,
C.
, Jiang,
L.
, and
Han,
S.
,
2018
, “
Initiation Pressure and Corresponding Initiation Mode of Drilling Induced Fracture in Pressure Depleted Reservoir
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012901
. 10.1115/1.4040753
15.
Aqeel
,
H.
, and
Abbas
,
S.
,
2013
, “
Electric Power Generation Device Through Bumps Industrial
,”
Acad. Res. Int.
,
4
(
4
), pp.
48
50
.
16.
Vazquez-Rodriguez
,
M.
,
Jimenez
,
F. J.
, and
De Frutos,
,
J.
,
2012
, “
Energy Harvesting Input Stage Model for Piezoelectric Materials Involved in Road Traffic Applications
,”
2012 IEEE International Conference on Industrial Technology (ICIT) IEEE
,
Athens, Greece
,
Mar. 19–21
,
IEEE
,
New York
, pp.
7
12
.
17.
Horianopoulos
,
D.
,
Pandreou
,
G.
,
2005
, “
Traffic-Actuated Electrical Generator Apparatus
,” US Patent No. 7,629,698 B2.
18.
Yang-Yang
,
Z.
,
2011
, “
Vibration Analysis of the Ground Generated by the Vehicles Crossing Speed Control Humps
,” thesis,
Zhejiang University
,
Zhejiang Sheng
.
19.
Yan
,
H.
, and
Shan
,
C.
,
2009
, “
Deceleration Theory of Speed Lump and Its Practice
,”
Road Traffic Safety
,
9
(
6
), pp.
16
20
.
20.
Hou
,
C.Y.
,
Peng
,
W.
,
Jin
,
X.X.
, and
Zhang
,
Q.
,
2010
, “
Dynamic Response Analysis of Vehicles Passing Over Speed Control Humps
,”
Mach. Des. Res.
,
26
(
2
), pp.
95
98
.
21.
Xiaoxiong
,
J.
,
2012
,
Vehicle Vibration Analysis
,
Tongji University Press
,
Shanghai
.
22.
Shaopu
,
Y.
,
2012
,
Dynamics of Vehicle-Road Coupling System
,
Beijing Science Press
,
Beijing
.
23.
Wang
,
L.
,
Todaria
,
P.
,
Pandey
,
A.
,
O'Connor
,
J.
,
Chernow
,
B.
,
Zuo
,
L.
,
2016
, “
An Electromagnetic Speed Bump Energy Harvester and Its Interactions With Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
21
(
4
), pp.
1985
1994
. 10.1109/TMECH.2016.2546179
24.
Samuel
,
R.
,
2013
, “
Modeling and Analysis of Drillstring Vibration in Riserless Environment
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013101
. 10.1115/1.4007691
25.
Jianrong
,
Z.
,
2002
,
ADAMS: Introduction and Improvement of Virtual Prototyping
,
Mechanical Industry Press
,
Beijing
, pp.
4
8
.
26.
Weidong
,
G.
,
Shouzhong
,
L.
, and
Yi
,
M.
,
2015
,
ADAMS 2013 Application Examples Tutorial: ADAMS 2013 Advanced Application Tutorial with Examples
,
Mechanical Industry Press
,
Beijing
, pp.
234
252
.
27.
Yongling
,
F.
, and
Xiaoye
,
Y.
,
2011
,
LMS Imagine.LabAMESim System Modeling and Simulation Reference Manual
,
Beijing Aerospace University Press
,
Beijing
, pp.
70
80
.
28.
Lin
,
J.
, and
Xu
,
B.
,
2003
, “
Study on Energy-Saving System of Hydraulic Elevators Using Pressure Accumulators as Power Source
,”
China Mech. Eng.
,
14
(
24
), pp.
2081
2084
.
29.
Lu
,
L.
, and
Yao
,
B.
,
2014
, “
Energy-Saving Adaptive Robust Control of a Hydraulic Manipulator Using Five Cartridge Valves With an Accumulator
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
7046
7054
. 10.1109/TIE.2014.2314054
30.
Eaton
,
W. P.
, and
Smith
,
J. H.
,
1997
, “
Micromachined Pressure Sensors: Review and Recent Developments
,”
Smart Mater. Struct.
,
6
(
5
), p.
530
. 10.1088/0964-1726/6/5/004
31.
Gustafsson
,
F.
,
2010
, “
Rotational Speed Sensors: Limitations, pre-Processing and Automotive Applications
,”
IEEE Instrum. Meas. Mag.
,
13
(
2
), pp.
16
23
. 10.1109/MIM.2010.5438333
You do not currently have access to this content.