In industrial refrigeration systems, such as ice rinks, because of consumption of a lot of energy, the selection of a refrigeration system is very important. At this work, environmental considerations are combined with thermodynamics and economics for the comparison of three different refrigeration systems in an ice rink, including the NH3/brine, CO2/brine, and full CO2. The first law of thermodynamics is used to calculate the system's coefficient of performance (COP) and the second law of thermodynamics is applied to quantify the exergy destructions in each component of a refrigeration system. With regard to the above, the exergy efficiency and energy consumption of the systems are determined by taking into account the heat recovery process that has been performed in the above-mentioned cycles. The results indicate that if a heat recovery system has been used in the refrigeration system, coefficient of performance of full CO2 refrigeration system is 33% higher than the CO2/brine and 66% greater than the NH3/brine system. The results also show that, whatever the refrigeration evaporating temperature in the NH3/brine system reaches lower than −12.4 °C, the total cost of this system will be greater than the full CO2 system.

References

References
1.
Bodinus
,
W. S.
,
1999
, “
The Rise and Fall of Carbon Dioxide Systems: The First Century of Air Conditioning
,”
ASHRAE J.
,
41
, pp.
37
45
.
2.
Rogstam
,
J.
,
2016
, “
Evolution of CO2 as Refrigerant in Ice Rink Applications
,”
12th IIR Gustav Lorentzen Natural Working Fluids Conference
,
Edinburgh, UK
,
Aug. 21–24
, pp.
293
300
.
3.
Haaf
,
S.
,
Heinbokel
,
B.
, and
Gernemann
,
A.
,
2005
, “
Erste CO2-Kälteanlage für Normal-und Tiefkühlung in einem Schweizer Hypermarkt
,”
Die Kälte Klimatechnik
,
58
, pp.
41
46
.
4.
Larsson
,
H.
,
2006
, “
Anbud Ishall Katrineholm-Kyla för Ispist
,”
Katrineholms Kommun. Anbud
,
50
, pp.
119
132
.
5.
Bansal
,
P. K.
, and
Jain
,
S.
,
2007
, “
Cascade Systems: Past, Present, and Future
,”
ASHRAE Trans.
,
113
, pp.
30
35
.
6.
Sawalha
,
S.
,
2008
, “
Carbon Dioxide in Supermarket Refrigeration
,” Ph. D. thesis,
Royal Institute of Technology
,
Stockholm, Sweden
.
7.
Getu
,
H.
, and
Bansal
,
P.
,
2008
, “
Thermodynamic Analysis of an R744–R717 Cascade Refrigeration System
,”
Int. J. Refrig.
,
31
, pp.
45
54
.
8.
Fornasieri
,
E.
,
Zilio
,
C.
,
Cecchinato
,
L.
,
Corradi
,
M.
, and
Minetto
,
S.
,
2009
, “
Natural refrigerant CO2
,” Leonardo Project, NARECO2.
9.
Reinholdt
,
L.
, and
Madsen
,
C.
,
2010
, “
Heat Recovery on CO2 Systems in Supermarkets
,”
9th IIR Gustav Lorentzen Conference
,
Sydney, Australia
.
10.
Omri
,
M.
, and
Galanis
,
N.
,
2010
, “
Prediction of 3D Airflow and Temperature Field in an Indoor Ice Rink With Radiant Heat Sources
,”
Build. Simul.
,
3
(
2
), pp.
153
164
.
11.
Simard
,
L.
,
2012
, “
Ice Rink Uses CO2 System
,”
ASHRAE J.
,
54
, pp.
38
45
.
12.
Yilmaz
,
B.
,
Mancuhan
,
E.
, and
Erdonmez
,
N.
,
2018
, “
A Parametric Study on a Subcritical CO2/NH3 Cascade Refrigeration System for Low Temperature Applications
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), pp.
920
927
.
13.
Hu
,
D.
,
Yu
,
Y.
,
Liu
,
P.
,
Wu
,
X.
, and
Zhao
,
Y.
,
2018
, “
Improving Refrigeration Performance by Using Pressure Exchange Characteristic of Wave Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), pp.
220
228
.
14.
Colorado-Garrido
,
D.
,
2018
, “
Advanced Exergy Analysis of a Compression–Absorption Cascade Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), pp.
320
332
.
15.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), pp.
720
733
.
16.
Khaliq
,
A.
,
Habib
,
M. A.
, and
Choudhary
,
K.
,
2018
, “
A Thermo-Environmental Evaluation of a Modified Combustion Gas Turbine Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), pp.
420
433
.
17.
Poredoš
,
P.
,
Vidrih
,
B.
,
Kitanovski
,
A.
, and
Poredoš
,
A.
,
2018
, “
A Thermo-Economic and Emissions Analysis of Different Sanitary-Water Heating Units Embedded Within Fourth-Generation District-Heating Systems
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), pp.
122
130
.
18.
Heon
,
K.
, and
Guerra
,
P.
,
2015
, “
CO2 Showcase for Ice Rinks, Pools
,”
ASHRAE J.
,
57
, pp.
62
73
.
19.
Keshtkar
,
M. M.
, and
Talebizadeh
,
P.
,
2017
, “
Multi-Objective Optimization of Cooling Water Package Based on 3E Analysis: A Case Study
,”
Energy
,
134
, pp.
840
849
.
20.
Keshtkar
,
M. M.
,
2018
, “
Numerical Analysis of Transcritical Carbon Dioxide Compression Cycle: A Case Study
,”
J. Adv. Comput. Sci. Technol.
,
7
(
1
), pp.
1
6
.
21.
Shaibani
,
A. R.
,
Keshtkar
,
M. M.
, and
Talebizadeh
,
P.
,
2019
, “
Thermo-Economic Analysis of a Cold Storage System in Full and Partial Modes With Two Different Scenarios: A Case Study
,”
J. Energy Storage
,
24
, pp.
321
333
.
22.
Messineo
,
A.
,
2012
, “
R744-R717 Cascade Refrigeration System: Performance Evaluation Compared With a HFC two-Stage System
,”
Energy Procedia
,
14
, pp.
56
65
.
23.
Feng
,
X.
, and
Zhu
,
X.
,
1997
, “
Combining Pinch and Exergy Analysis for Process Modifications
,”
Appl. Therm. Eng.
,
17
, pp.
249
261
.
24.
Almeida
,
I. M. G.
,
Barbosa
,
C. R. F.
, and
Fontes
,
F. d. A. O.
,
2011
, “
Performance Analysis of Two-Stage Transcritical Refrigeration Cycle Operating With R744
,”
21st Brazilian Congress of Mechanical Engineering
, pp.
24
28
.
You do not currently have access to this content.