A Kalina cycle is coupled to an ejector refrigeration cycle to generate power and refrigeration outputs, simultaneously. Ejector refrigeration cycle is driven by the heat which is extracted from a high-temperature/pressure stream of Kalina cycle working fluid since the energy content of this fluid stream is not directly utilized in power production in the Kalina cycle. Supplied heat to the proposed combined cycle is produced by combustion of biomethane which is obtained from anaerobic digestion of biomass, namely, food waste. System reactions to altering operation conditions (entrainment ratio, condenser pressure, evaporator pressure, and superheating degree) in terms of refrigeration production, power production, energy efficiency, exergy efficiency, and exergy of produced power and refrigeration are analyzed. The results are reported for R290, R134a, and R152a working fluids of the ejector refrigeration cycle and an extensive discussion of the results are provided. It is shown that the entrainment ratio strongly affects the thermal and exergy efficiency results. The highest thermal and exergy efficiency results are performed when R290 and R134a are used, whereas the lowest thermal and exergy efficiencies are obtained when R152a and R290 are used as the refrigerant, respectively.

References

References
1.
Lantz
,
M.
,
Björnsson
,
L.
,
Svensson
,
L. M.
, and
Börjesson
,
P.
,
2007
, “
The Prospects for an Expansion of Biogas System in Sweden Incentives, Barriers and Potentials
,”
Energy Policy
,
35
, pp.
1830
1843
.
2.
UNEP (United Nations Environment Programme)
, “
Solid Waste Management
,” http://www.unep.or.jp/ietc/publications/spc/solid_waste_management/Vol_I/Binder1.pdf, Accessed July 12, 2018.
3.
EPA (European Environment Agency)
, “
Biodegradable Municipal Waste Management in Europe, Part 3: Technology and Market Issues
,” https://www.eea.europa.eu/publications/topic_report_2001_15_Part3/download Accessed July 12, 2018.
4.
Angelidaki
,
I.
,
Treu
,
L.
,
Tsapekos
,
P.
,
Luo
,
G.
,
Campanaro
,
S.
,
Wenzel
,
H.
, and
Kougias
,
P. G.
,
2018
, “
Biogas Upgrading and Utilization: Current Status and Perspectives
,”
Biotechnol. Adv.
,
36
, pp.
452
466
.
5.
Appels
,
L.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Dewil
,
R.
,
2008
, “
Principles and Potential of the Anaerobic Digestion of Waste Activated Sludge
,”
Prog. Energy Combust. Sci.
,
34
, pp.
755
781
.
6.
Dos Santos
,
I. F. S.
,
Barros
,
R. M.
, and
Filho
,
G. L. T.
,
2016
, “
Electricity Generation From Biogas of Anaerobic Wastewater Treatment Plants in Brazil: An Assessment of Feasibility and Potential
,”
J. Cleaner Prod.
,
126
, pp.
504
514
.
7.
Wong
,
K. V.
,
2014
, “
Engineering Solutions to the Greenhouse Gases Generated by Hydroelectric Plants
,”
ASME J. Energy Resour. Technol.
,
136
, p.
024701
.
8.
Seckin
,
C.
, and
Bayulken
,
A. R.
,
2013
, “
Extended Exergy Accounting (EEA) Analysis of Municipal Wastewater Treatment—Determination of Environmental Remediation Cost for Municipal Wastewater
,”
Appl. Energy
,
110
, pp.
55
64
.
9.
Seckin
,
C.
, and
Bayulken
,
A. R.
,
2012
, “
Determination of Environmental Remediation Cost of Municipal Waste in Terms of Extended Exergy
,”
Proceedings of the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2012)
,
Perugia, Italy
,
June 26–29, 2012
, pp.
10
17
.
10.
Tchobanoglous
,
G.
,
Burton
,
F. L.
, and
Stensel
,
H. D.
,
2002
,
Wastewater Engineering Treatment Disposal Reuse
,
McGraw-Hill and Metcalf & Eddy Inc.
,
Boston, MA
.
11.
European Commission
, “
Disposal and Recycling Routes for Sewage Sludge: Part 3 – Scientific and Technical Report
,” http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal3.pdf, Accessed July 12, 2018.
12.
Franchetti
,
M.
,
2013
, “
Economic and Environmental Analysis of Four Different Configurations of Anaerobic Digestion for Food Waste to Energy Conversion Using LCA for a Food Service Provider Case Study
,”
J. Environ. Manage.
,
123
, pp.
42
48
.
13.
Khoo
,
H. H.
,
Lim
,
T. Z.
, and
Tan
,
R. B. H.
,
2010
, “
Food Waste Conversion Options in Singapore: Environmental Impacts Based on an LCA Perspective
,”
Sci. Total Environ.
,
408
, pp.
1367
1373
.
14.
Levis
,
J. W.
,
Barlaz
,
M. A.
,
Themelis
,
N. J.
, and
Ulloa
,
P.
,
2010
, “
Assessment of the State of Food Waste Treatment in the United States and Canada
,”
Waste Manage.
,
30
, pp.
1486
1494
.
15.
United Nations The Secretary-General’s Advisory Group on Energy and Climate Change (AGECC)
, “
Energy for a Sustainable Future—Report and Recommendations
,” http://www.un.org/millenniumgoals/pdf/AGECCsummaryreport[1].pdf, Accessed July 12, 2018.
16.
Cakir
,
U.
,
Comakli
,
K.
, and
Yuksel
,
F.
,
2012
, “
The Role of Cogeneration Systems in Sustainability of Energy
,”
Energy Convers. Manage.
,
63
, pp.
196
202
.
17.
Comaklı
,
K.
,
2008
, “
Economic and Environmental Comparison of the Natural Gas Fired Conventional and Condensing Combi-Boilers
,”
J. Energy Inst.
,
81
, pp.
242
246
.
18.
Abusoglu
,
A.
, and
Kanoglu
,
M.
,
2009
, “
Exergetic and Thermodynamic Analyses of Diesel Engine Powered Cogeneration. Part 1. Formulations
,”
Appl. Therm. Eng.
,
29
, pp.
234
241
.
19.
Wilkinson
,
B. W.
, and
Barnes
,
R. W.
,
1980
,
Cogeneration of Electricity and Useful Heat
,
CRC Press Inc.
,
London
.
20.
Brizi
,
F.
,
Silveira
,
J. L.
,
Desideri
,
U.
,
Reis
,
J. A.
,
Tuna
,
C. E.
, and
Lamas
,
W. Q.
,
2014
, “
Energetic and Economic Analysis of a Brazilian Compact Cogeneration System: Comparison Between Natural Gas and Biogas
,”
Renew. Sustain. Energy Rev.
,
38
, pp.
193
211
.
21.
Khankari
,
G.
, and
Karmakar
,
S.
,
2016
, “
Power Generation From Coal Mill Rejection Using Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
138
, p.
052004
.
22.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
127
, pp.
125
130
.
23.
Barkhordarian
,
O.
,
Behbahaninia
,
A.
, and
Bahrampoury
,
R.
,
2017
, “
A Novel Ammonia-Water Combined Power and Refrigeration Cycle With Two Different Cooling Temperature Levels
,”
Energy
,
120
, pp.
816
826
.
24.
Seckin
,
C.
,
2018
, “
Thermodynamic Analysis of a Combined Power/Refrigeration Cycle: Combination of Kalina Cycle and Ejector Refrigeration Cycle
,”
Energy Convers. Manage.
,
157
, pp.
631
643
.
25.
Kalina
,
A. I.
,
1983
, “
Combined Cycle and Waste-Heat Recovery Power Systems Based on a Novel Thermodynamic Energy Cycle Utilizing low-Temperature Heat for Power Generation
,”
Proceedings of 1983 Joint Power Generation Conference: GT Papers
,
Indianapolis, IN
,
Sept. 25–29
, pp. 1–5.
26.
Kalina
,
A. I.
,
1984
, “
Combined Cycle System With Novel Bottoming Cycle
,”
J. Eng. Gas Turbines Power
,
106
, pp.
737
742
.
27.
Ibrahim
,
O. M.
, and
Klein
,
S. A.
,
1996
, “
Absorption Power Cycles
,”
Energy
,
21
, pp.
21
27
.
28.
Marston
,
C. H.
,
1990
, “
Parametric Analysis of the Kalina Cycle
,”
J. Eng. Gas Turbines Power
,
112
, pp.
107
116
.
29.
Park
,
Y.
, and
Sonntag
,
R.
,
1990
, “
A Preliminary Study of the Kalina Power Cycle in Connection With a Combined Cycle System
,”
Int. J. Energy Res.
,
14
, pp.
153
162
.
30.
Zhang
,
X. X.
,
He
,
M. G.
, and
Zhang
,
Y.
,
2012
, “
A Review of Research on the Kalina Cycle
,”
Renew. Sustain. Energy Rev.
,
16
, pp.
5309
5318
.
31.
Rodriguez
,
C. E. C.
,
Palacio
,
J. C. E.
,
Venturini
,
O. J.
,
Lora
,
E. E. S.
,
Cobas
,
V. M.
, and
Santos
,
D. M. D.
,
2013
, “
Energetic and Economic Comparison of ORC and Kalina Cycle for Low Temperature Enhanced Geothermal System in Brazil
,”
Appl. Therm. Eng.
,
52
, pp.
109
119
.
32.
Fu
,
W.
,
Zhu
,
J.
,
Li
,
T.
,
Zhang
,
W.
, and
Li
,
J.
,
2013
, “
Comparison of a Kalina Cycle Based Cascade Utilization System With an Existing Organic Rankine Cycle Based Geothermal Power System in an Oilfield
,”
Appl. Therm. Eng.
,
58
, pp.
224
233
.
33.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2015
, “
Exergoeconomic Analysis and Optimization of Basic, Dual-Pressure and Dual-Fluid ORCs and Kalina Geothermal Power Plants: A Comparative Study
,”
Renew. Energy
,
83
, pp.
527
542
.
34.
Zare
,
V.
, and
Mahmoudi
,
S. M. S.
,
2015
, “
A Thermodynamic Comparison Between Organic Rankine and Kalina Cycles for Waste Heat Recovery From the Gas Turbine-Modular Helium Reactor
,”
Energy
,
79
, pp.
398
406
.
35.
Li
,
S.
, and
Dai
,
Y.
,
2014
, “
Thermo-Economic Comparison of Kalina and CO2 Transcritical Power Cycle for Low Temperature Geothermal Sources in China
,”
Appl. Therm. Eng.
,
70
, pp.
139
152
.
36.
Zheng
,
D. X.
,
Chen
,
B.
,
Qi
,
Y.
, and
Jin
,
H. G.
,
2006
, “
Thermodynamic Analysis of a Novel Absorption Power/Cooling Combined-Cycle
,”
Appl. Energy
,
83
, pp.
311
323
.
37.
Yu
,
Z.
,
Han
,
J.
,
Liu
,
H.
, and
Zhao
,
H.
,
2014
, “
Theoretical Study on a Novel Ammonia–Water Cogeneration System With Adjustable Cooling to Power Ratios
,”
Appl. Energy
,
122
, pp.
53
61
.
38.
Jing
,
X.
, and
Zheng
,
D.
,
2014
, “
Effect of Cycle Coupling-Configuration on Energy Cascade Utilization for a New Power and Cooling Cogeneration Cycle
,”
Energy Convers. Manage.
,
78
, pp.
58
64
.
39.
Hua
,
J.
,
Chen
,
Y.
,
Wang
,
Y.
, and
Roskilly
,
A. P.
,
2014
, “
Thermodynamic Analysis of Ammonia–Water Power/Chilling Cogeneration Cycle With Low-Grade Waste Heat
,”
Appl. Therm. Eng.
,
64
, pp.
483
490
.
40.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), pp.
1
10
.
41.
Chunnanond
,
K.
, and
Aphornratana
,
S.
,
2004
, “
Ejectors: Applications in Refrigeration Technology
,”
Renew. Sustain. Energy Rev.
,
8
, pp.
129
155
.
42.
Seckin
,
C.
,
2017
, “
Effect of Ejector Internal Efficiencies on Cooling Performance of an Ejector Expansıon Refrigeration Cycle With a Two Phase Ejector
,”
Proceedings of the International Conference on Energy and Thermal Engineering: ICTE 2017
,
Istanbul, Turkey
,
Apr. 25–28
, pp.
152
161
.
43.
Ghaebi
,
H.
,
Rostamzadeh
,
H.
, and
Matin
,
P. S.
,
2017
, “
Performance Evaluation of Ejector Expansion Combined Cooling and Power Cycles
,”
Heat Mass Transfer
,
4
, pp.
1
17
.
44.
Wang
,
J.
,
Dai
,
Y.
,
Zhang
,
T.
, and
Ma
,
S.
,
2009
, “
Parametric Analysis for a New Combined Power and Ejector Absorption Refrigeration Cycle
,”
Energy
,
34
(
10
), pp.
1587
1593
.
45.
Wang
,
J. F.
,
Zhao
,
P.
,
Niu
,
X.
, and
Dai
,
Y.
,
2012
, “
Parametric Analysis of a New Combined Cooling, Heating, and Power System With Transcritical CO2 Driven by Solar Energy
,”
Appl. Energy
,
94
, pp.
58
64
.
46.
Xu
,
X. X.
,
Liu
,
C.
,
Fu
,
X.
,
Gao
,
H.
, and
Li
,
Y.
,
2015
, “
Energy and Exergy Analyses of a Modified Combined Cooling, Heating, and Power System Using Supercritical CO2
,”
Energy
,
86
, pp.
414
422
.
47.
Fu
,
W.
,
Zhu
,
J.
,
Zhang
,
W.
, and
Lu
,
Z.
,
2013
, “
Performance Evaluation of Kalina Cycle Subsystem on Geothermal Power Generation in the Oilfield
,”
Appl. Therm. Eng.
,
54
, pp.
497
506
.
48.
Wang
,
E.
, and
Yu
,
Z.
,
2016
, “
A Numerical Analysis of a Composition-Adjustable Kalina Cycle Power Plant for Power Generation From Low-Temperature Geothermal Sources
,”
Appl. Energy
,
180
, pp.
834
848
.
49.
Cao
,
L.
,
Wang
,
J.
, and
Dai
,
Y.
,
2014
, “
Thermodynamic Analysis of a Biomass-Fired Kalina Cycle With Regenerative Heater
,”
Energy
,
77
, pp.
760
770
.
50.
Lolos
,
P. A.
, and
Rogdakis
,
E. D.
,
2009
, “
A Kalina Power Cycle Driven by Renewable Energy Sources
,”
Energy
,
34
, pp.
457
464
.
51.
Mirolli
,
M. D.
,
2005
, “
The Kalina Cycle for Cement Kiln Waste Heat Recovery Power Plants
,”
Proceedings of IEEE Cement Industry Technical Conference
,
Kansas City, MO
,
June 5–8, 2005
, pp.
330
336
.
52.
Singh
,
O. K.
, and
Kaushik
,
S. C.
,
2013
, “
Energy and Exergy Analysis and Optimization of Kalina Cycle Coupled With a Coal Fired Steam Power Plant
,”
Appl. Therm. Eng.
,
51
, pp.
787
800
.
53.
Gholamian
,
E.
, and
Zare
,
V. A.
,
2016
, “
Comparative Thermodynamic Investigation With Environmental Analysis of SOFC Waste Heat to Power Conversion Employing Kalina and Organic Rankine Cycles
,”
Energy Convers. Manage.
,
117
, pp.
150
161
.
54.
Bombarda
,
P.
,
Invernizzi
,
C. M.
, and
Pietra
,
C.
,
2010
, “
Heat Recovery From Diesel Engines: A Thermodynamic Comparison Between Kalina and ORC Cycle
,”
Appl. Therm. Eng.
,
30
, pp.
212
219
.
55.
Rezaee
,
V.
, and
Houshmand
,
A.
,
2016
, “
Energy and Exergy Analysis of a Combined Power Generation System Using PEM Fuel Cell and Kalina Cycle System
,”
Period. Polytech., Chem. Eng.
,
60
, pp.
98
105
.
56.
Yapıcı
,
R.
, and
Ersoy
,
H. K.
,
2005
, “
Performance Characteristics of the Ejector Refrigeration System Based on the Constant Area Ejector Flow Model
,”
Energy Convers. Manage.
,
46
, pp.
3117
3135
.
57.
Ersoy
,
H. K.
,
Yalcin
,
S.
,
Yapici
,
R.
, and
Ozgoren
,
M.
,
2007
, “
Performance of a Solar Ejector Cooling-System in the Southern Region of Turkey
,”
Appl. Energy
,
84
, pp.
971
983
.
58.
Khalil
,
A.
,
Fatouh
,
M.
, and
Elgendy
,
E.
,
2011
, “
Ejector Design and Theoretical Study of R134a Ejector Refrigeration Cycle
,”
Int. J. Refrig.
,
34
(
7
), pp.
1684
1698
.
59.
Seckin
,
C.
,
2017
, “
Parametric Analysis and Comparison of Ejector Expansion Refrigeration Cycles With Constant Area and Constant Pressure Ejectors
,”
ASME J. Energy Resour. Technol.
,
139
, p.
042005
.
60.
Sadeghi
,
M.
,
Mahmoudi
,
S. M. S.
, and
Saray
,
R. K.
,
2015
, “
Exergoeconomic Analysis and Multi-Objective Optimization of an Ejector Refrigeration Cycle Powered by an Internal Combustion (HCCI) Engine
,”
Energy Convers. Manage.
,
96
, pp.
403
417
.
61.
Carroll
,
L.
, “
Calorific Value of Methane
,” http://www.acpnonfood.com/Methane1.pptx, Accessed July 12, 2018.
62.
Ahmad
,
M.
, and
Karimi
,
M. N.
,
2016
, “
Thermodynamic Analysis of Kalina Cycle
,”
Int. J. Sci. Res.
,
5
, pp.
2244
2249
.
63.
Alexis
,
G. K.
, and
Karayiannis
,
E. K.
,
2005
, “
A Solar Ejector Cooling System Using Refrigerant R134a in the Athens Area
,”
Renewable Energy
,
30
, pp.
1457
1469
.
64.
Ouzzane
,
M.
, and
Aidoun
,
Z.
,
2003
, “
Model Development and Numerical Procedure for Detailed Ejector Analysis and Design
,”
Appl. Therm. Eng.
,
23
, pp.
2337
2351
.
65.
Huang
,
B. J.
,
Chang
,
J. M.
,
Wang
,
C. P.
, and
Petrenko
,
V. A.
,
1999
, “
A 1-D Analysis of Ejector Performance
,”
Int. J. Refrig.
,
22
, pp.
354
364
.
66.
Shu
,
F. H.
,
1991
,
The Physics of Astrophysics. Vol.2: Gas Dynamics
,
University Science Books
,
Mill Valley
.
67.
Carrillo
,
J. A. E.
,
de La Flor
,
S.
,
Salmeron Lissen
,
F. J.
, and
M
,
J.
,
2017
, “
Thermodynamic Comparison of Ejector Cooling Cycles. Ejector Characterization by Means of Entrainment Ratio and Compression Efficiency
,”
Int. J. Refrig.
,
74
, pp.
369
382
.
68.
Tashtoush
,
B.
,
Alshare
,
A.
, and
Al-Rifai
,
S.
,
2015
, “
Performance Study of Ejector Cooling Cycle at Critical Mode Under Superheated Primary Flow
,”
Energy Convers. Manage.
,
94
, pp.
300
310
.
69.
Selvaraju
,
A.
, and
Mani
,
A.
,
2004
, “
Analysis of an Ejector With Environment Friendly Refrigerants
,”
Appl. Therm. Eng.
,
24
, pp.
827
838
.
70.
Nehdi
,
E.
,
Kairouani
,
L.
, and
Elakhdar
,
M.
,
2008
, “
A Solar Ejector Air-Conditioning System Using Environment-Friendly Working Fluids
,”
Int. J. Energy Res.
,
32
, pp.
1194
1201
.
71.
Sun
,
D. W.
,
1999
, “
Comparative Study of the Performance of an Ejector Refrigeration Cycle Operating With Various Refrigerants
,”
Energy Convers. Manage.
,
40
, pp.
873
884
.
72.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
1st ed.
,
Hemisphere Publishing Corporation
,
New York
.
73.
De Clercq
,
D.
,
Wen
,
Z.
,
Fan
,
F.
, and
Caicedo
,
L.
,
2016
, “
Biomethane Production Potential From Restaurant Food Waste in Megacities and Project Level-Bottlenecks: A Case Study in Beijing
,”
Renew. Sustain. Energy Rev.
,
59
, pp.
1676
1685
.
74.
Cherubini
,
F.
,
Bargigli
,
S.
, and
Ulgiati
,
S.
,
2009
, “
Life Cycle Assessment (LCA) of Waste Management Strategies: Landfilling, Sorting Plant and Incineration
,”
Energy
,
34
, pp.
2116
2123
.
75.
Lopez
,
V. M.
,
De la Cruz
,
F. B.
, and
Barlaz
,
M. A.
,
2016
, “
Chemical Composition and Methane Potential of Commercial Food Wastes
,”
Waste Manage.
,
56
, pp.
477
490
.
76.
Parkin
,
G. F.
, and
Owen
,
W. F.
,
1986
, “
Fundamentals of Anaerobic Digestion of Wastewater Sludges
,”
J. Environ. Eng.
,
12
, pp.
867
920
.
77.
Angelis-Dimakis
,
A.
,
Biberacher
,
M.
,
Dominguez
,
J.
,
Fiorese
,
G.
,
Gadocha
,
S.
, and
Gnansounou
,
E.
,
2011
, “
Methods and Tools to Evaluate the Availability of Renewable Energy Sources
,”
Renew. Sustain. Energy Rev.
,
15
, pp.
1182
1200
.
78.
Bilgen
,
S.
,
Kaygusuz
,
K.
, and
Sari
,
A.
,
2004
, “
Second Law Analysis of Various Types of Coal and Woody Biomass in Turkey
,”
Energy Sources
,
26
, pp.
1083
1094
.
79.
Ertesvag
,
I. S.
, “
Energy and Exergy in Moist Fuels
,” http://folk.ntnu.no/ivarse/energi/moistfuel.pdf, Accessed July 12, 2018.
You do not currently have access to this content.