High-performance drilling fluid was designed for unconventional reservoirs to minimize the formation damage and borehole instability using organophilic clay treated with trimethyloctylammonium bromide, novel in-house synthesized gemini surfactant, and a high-molecular weight polymer. This gemini surfactant has not been reported in the literature for drilling fluid applications. The performance of designed drilling fluid was evaluated and compared with the base drilling fluid (4 w/v.% bentonite dispersion water). Shale dispersion, linear swelling, filtration, and rheological experiments were performed to investigate the effect of drilling fluids on borehole stability and formation damage. The combined use of organophilic clay and surfactant in the drilling fluid formulation reduced the shale dispersion up to 89%. The linear swelling experiment of shale sample shows 10% swelling of the core in the modified drilling fluid while in base fluid 13% swelling of shale was observed. It was found that modified drilling fluid interactions with shale were greatly reduced using a surfactant and associative polymer in the drilling fluid formulation. Rheological properties of drilling fluids were stable, and filtration characteristics showed that the filtrate volume was within the acceptable limit. The designed drilling fluid made a thin and impermeable filter cake that prevents the invasion of drilling fluid into the formation. This study opens a new direction to reduce the formation damage and borehole instability using organophilic clay, surfactant and high-molecular weight additive in water-based drilling fluid.

References

References
1.
Briscoe
,
B. J.
,
Luckham
,
P. F.
, and
Ren
,
S.
,
1994
, “
The Properties of Drilling Muds at High Pressures and High Temperatures
,”
Phil. Trans. R. Soc. Lond. A
,
348
(
1687
), pp.
179
207
.
2.
Cameron
,
C.
,
2001
, “
Drilling Fluids Design and Management for Extended Reach Drilling
,”
SPE/IADC Middle East Drilling Technology Conference
,
Bahrain
,
Oct. 22–24
.
3.
Omland
,
T.
,
Dahl
,
B.
,
Saasen
,
A.
,
Taugbol
,
K.
, and
Amundsen
,
P.
,
2008
, “
Optimized Solid Control Provides Opportunities for Drilling Depleted Reservoirs
,”
J. Pet Technol.
60
(
11
), pp.
84
86
.
4.
Ahmad
,
H. M.
,
Kamal
,
M. S.
,
Murtaza
,
M.
, and
Al-Harthi
,
M. A.
,
2017
, “
Improving the Drilling Fluid Properties Using Nanoparticles and Water-Soluble Polymers
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
April 4–27
.
5.
Ahmad
,
H. M.
,
Kamal
,
M. S.
, and
Al-Harthi
,
M. A.
,
2018
, “
Effect of Thermal Aging and Electrolyte on Bentonite Dispersions: Rheology and Morphological Properties
,”
J. Mol. Liq.
269
(
November
), pp.
278
286
.
6.
Ahmad
,
H. M.
,
Kamal
,
M. S.
,
Al-Harthi
,
M. A.
,
Elkatatny
,
S. M.
, and
Murtaza
,
M. M.
,
2018
, “
Synthesis and Experimental Investigation of Novel CNT-Polymer Nanocomposite to Enhance Borehole Stability at High Temperature Drilling Applications
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
April 23–26
.
7.
Magzoub
,
M.
,
Mahmoud
,
M.
,
Nasser
,
M.
,
Hussein
,
I.
,
Elkatatny
,
S.
, and
Sultan
,
A.
,
2019
, “
Thermochemical Upgrading of Calcium Bentonite for Drilling Fluid Applications
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042902
.
8.
Adewole
,
J. K.
, and
Najimu
,
M. O.
,
2018
, “
A Study on the Effects of Date Pit-Based Additive on the Performance of Water-Based Drilling Fluid
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052903
.
9.
Kutlu
,
B.
,
Takach
,
N.
,
Ozbayoglu
,
E. M.
,
Miska
,
S. Z.
,
Yu
,
M.
, and
Mata
,
C.
,
2017
, “
Drilling Fluid Density and Hydraulic Drag Reduction With Glass Bubble Additives
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042904
.
10.
Sherwood
,
J.
,
1994
, “
A Model for the Flow of Water and Ions Into Swelling Shale
,”
Langmuir
,
10
(
7
), pp.
2480
2486
.
11.
Bailey
,
L.
,
Keall
,
M.
,
Audibert
,
A.
, and
Lecourtier
,
J.
,
1994
, “
Effect of Clay/Polymer Interactions on Shale Stabilization During Drilling
,”
Langmuir
,
10
(
5
), pp.
1544
1549
.
12.
Yuan
,
W.
,
Li
,
X.
,
Pan
,
Z.
,
Connell
,
L. D.
,
Li
,
S.
, and
He
,
J.
,
2014
, “
Experimental Investigation of Interactions Between Water and a Lower Silurian Chinese Shale
,”
Energy Fuels
,
28
(
8
), pp.
4925
4933
.
13.
Luckham
,
P. F.
, and
Rossi
,
S.
,
1999
, “
The Colloidal and Rheological Properties of Bentonite Suspensions
,”
Adv. Colloid Interface Sci.
,
82
(
1–3
), pp.
43
92
.
14.
Laird
,
D. A.
,
2006
, “
Influence of Layer Charge on Swelling of Smectites
,”
Appl. Clay Sci.
,
34
(
1–4
), pp.
74
87
.
15.
Lantenois
,
S.
,
Nedellec
,
Y.
,
Prélot
,
B.
,
Zajac
,
J.
,
Muller
,
F.
, and
Douillard
,
J.-M.
,
2007
, “
Thermodynamic Assessment of the Variation of the Surface Areas of Two Synthetic Swelling Clays During Adsorption of Water
,”
J. Colloid Interface Sci.
,
316
(
2
), pp.
1003
1011
.
16.
Anderson
,
R.
,
Ratcliffe
,
I.
,
Greenwell
,
H.
,
Williams
,
P.
,
Cliffe
,
S.
, and
Coveney
,
P.
,
2010
, “
Clay Swelling—a Challenge in the Oilfield
,”
Earth-Sci. Rev.
,
98
(
3–4
), pp.
201
216
.
17.
Salles
,
F.
,
Bildstein
,
O.
,
Douillard
,
J.
,
Jullien
,
M.
,
Raynal
,
J.
, and
Van Damme
,
H.
,
2010
, “
On the Cation Dependence of Interlamellar and Interparticular Water and Swelling in Smectite Clays
,”
Langmuir
,
26
(
7
), pp.
5028
5037
.
18.
Steiger
,
R. P.
,
1982
, “
Fundamentals and use of Potassium/Polymer Drilling Fluids to Minimize Drilling and Completion Problems Associated with Hydratable Clays
,”
J. Pet. Technol.
,
34
(
08
), pp.
1661
1670
.
19.
Sharma
,
S. K.
, and
Kachari
,
J.
,
2010
, “
Use of KCl-Polymer Clouding Out Polyol Drilling Fluid in Combating High Pressure in Deep Exploratory Wells of Assam Field: A Case Study
,”
SPE Oil and Gas India Conference and Exhibition
,
Mumbai, India
,
Jan. 20–22
.
20.
Xuan
,
Y.
,
Jiang
,
G.
,
Li
,
Y.
,
Yang
,
L.
, and
Zhang
,
X.
,
2015
, “
Biodegradable Oligo (Poly-L-Lysine) as a High-Performance Hydration Inhibitor for Shale
,”
RSC Adv.
,
5
(
103
), pp.
84947
84958
.
21.
Zhong
,
H.
,
Qiu
,
Z.
,
Zhang
,
D.
,
Tang
,
Z.
,
Huang
,
W.
, and
Wang
,
W.
,
2016
, “
Inhibiting Shale Hydration and Dispersion with Amine-Terminated Polyamidoamine Dendrimers
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
52
60
.
22.
Patel
,
A.
,
Stamatakis
,
S.
,
Young
,
S.
, and
Friedheim
,
J.
,
2007
, “
Advances in Inhibitive Water-Based Drilling Fluids—can They Replace oil-Based Muds?
International Symposium on Oilfield Chemistry
,
Houston, Texas, USA
,
Feb. 28–Mar. 2
.
23.
Suter
,
J.
,
Coveney
,
P.
,
Anderson
,
R.
,
Greenwell
,
H.
, and
Cliffe
,
S.
,
2011
, “
Rule Based Design of Clay-Swelling Inhibitors
,”
Energy Environ. Sci.
,
4
(
11
), pp.
4572
4586
.
24.
Kjøsnes
,
I.
,
Løklingholm
,
G.
,
Saasen
,
A.
,
Syrstad
,
S.
,
Agle
,
A.
, and
Solvang
,
K.-A.
,
2003
, “
Successful Water Based Drilling Fluid Design for Optimizing Hole Cleaning and Hole Stability
,”
SPE/IADC Middle East Drilling Technology Conference and Exhibition
,
Abu Dhabi, United Arab Emirates
,
Oct. 20–22
.
25.
Simonides
,
H.
,
Schuringa
,
G.
, and
Ghalambor
,
A.
,
2002
, “
Role of Starch in Designing Nondamaging Completion and Drilling Fluids
,”
International Symposium and Exhibition on Formation Damage Control
,
Lafayette, Louisiana
,
Feb. 20–21
.
26.
Shettigar
,
R. R.
,
Misra
,
N. M.
, and
Patel
,
K.
,
2018
, “
Cationic Surfactant (CTAB) a Multipurpose Additive in Polymer-Based Drilling Fluids
,”
J. Pet. Explor. Prod. Technol.
8
(
2
), pp.
597
606
.
27.
De Paiva
,
L. B.
,
Morales
,
A. R.
, and
Díaz
,
F. R. V.
,
2008
, “
Organoclays: Properties, Preparation and Applications
,”
Appl. Clay Sci.
,
42
(
1–2
), pp.
8
24
.
28.
MacEwan
,
D. M.
,
Wilson
,
M.
,
Brindley
,
G.
, and
Brown
,
G.
,
1980
, “Interlayer and Intercalation Complexes of Clay Minerals,”
Crystal Structures of Clay Minerals and Their X-Ray Identification
, Vol.
5
,
Mineralogical Society
,
UK
, pp.
197
248
.
29.
Hussain
,
S. S.
,
Kamal
,
M. S.
,
El Ali
,
B.
, and
Sultan
,
A. S.
,
2017
, “
Synthesis and Evaluation of Novel Amido-Amine Cationic Gemini Surfactants Containing Flexible and Rigid Spacers
,”
J. Surfactants Deterg.
,
20
(
4
), pp.
777
788
.
30.
Hussain
,
S. S.
, and
Kamal
,
M. S.
,
2017
, “
Effect of Large Spacer on Surface Activity, Thermal, and Rheological Properties of Novel Amido-Amine Cationic Gemini Surfactants
,”
J. Mol. Liq.
242
(
September
), pp.
1131
1137
.
31.
Hussain
,
S. S.
,
Kamal
,
M. S.
, and
Sultan
,
A. S.
,
2017
, “
Amido-Amine-Based Cationic Gemini Surfactants: Thermal and Interfacial Properties and Interactions With Cationic Polyacrylamide
,”
J. Surfactants Deterg.
,
20
(
1
), pp.
47
55
.
32.
Hussain
,
S. S.
, and
Kamal
,
M. S.
,
2018
, “
Amido-Amine Based Surfactants: Synthesis, Characterization, and Physico-Chemical Investigation for Enhanced Oil Recovery in Carbonate Reservoirs
,”
AOCS Annual Meeting, Minneapolis
,
USA
,
May 6–9
.
33.
Kamal
,
M. S.
, and
Hussain
,
S. S.
,
2018
, “
Cationic Polyacrylamide/Cationic Gemini Surfactants Hybrid Material for Enhanced Oil Recovery in Carbonate Reservoirs
,”
AOCS Annual Meeting & Expo, Minneapolis
,
USA
,
May 6–9
.
34.
Zhang
,
W.
,
Chen
,
D.
,
Xu
,
H.
,
Shen
,
X.
, and
Fang
,
Y.
,
2003
, “
Influence of Four Different Types of Organophilic Clay on the Morphology and Thermal Properties of Polystyrene/Clay Nanocomposites Prepared by Using the γ-ray Irradiation Technique
,”
Eur. Polym. J.
,
39
(
12
), pp.
2323
2328
.
35.
Ahmad
,
H. M.
,
Kamal
,
M. S.
, and
Al-Harthi
,
M. A.
,
2018
, “
High Molecular Weight Copolymers as Rheology Modifier and Fluid Loss Additive for Water-Based Drilling Fluids
,”
J. Mol. Liq.
,
252
, pp.
133
143
.
36.
Ahmad
,
H. M.
,
Kamal
,
M. S.
, and
Al-Harthi
,
M. A.
,
2018
, “
Rheological and Filtration Properties of Clay-Polymer Systems: Impact of Polymer Structure
,”
Appl. Clay Sci.
37.
Al-Laboun
,
A. A.
,
1988
, “
The Distribution of Carboniferous-Permian Siliciclastic Rocks in the Greater Arabian Basin
,”
Geol. Soc. Am. Bull.
,
100
(
3
), pp.
362
373
.
38.
Abouelresh
,
M. O.
,
2017
, “
An Integrated Characterization of the Porosity in Qusaiba Shale, Saudi Arabia
,”
J. Pet. Sci. Eng.
149
(
January
), pp.
75
87
.
39.
Mahmoud
,
M.
,
Vaslet
,
D.
, and
Husseini
,
M.
,
1992
, “
The Lower Silurian Qalibah Formation of Saudi Arabia: An Important Hydrocarbon Source Rock (1)
,” ,
76
(
10
), pp.
1491
1506
.
40.
Birkle
,
P.
,
2016
, “
Geochemical Fingerprinting of Hydraulic Fracturing Fluids From Qusaiba Hot Shale and Formation Water From Paleozoic Petroleum Systems, Saudi Arabia
,”
Geofluids
,
16
(
3
), pp.
565
584
.
41.
Vryzas
,
Z.
,
Kelessidis
,
V. C.
,
Nalbantian
,
L.
,
Zaspalis
,
V.
,
Gerogiorgis
,
D. I.
, and
Wubulikasimu
,
Y.
,
2017
, “
Effect of Temperature on the Rheological Properties of Neat Aqueous Wyoming Sodium Bentonite Dispersions
,”
Appl. Clay Sci.
,
136
, pp.
26
36
.
You do not currently have access to this content.