Carbonate rocks are generally highly heterogeneous that make it difficult to accurately assess the behavior of fluid flow and transport in them. In this paper, we experimentally investigate the oil–water displacement in carbonate reservoirs by mimicking the typical pore vugs of carbonates through fabricating glass micromodels. The micromodels were saturated completely with oil, and then water was injected continuously at a constant rate until a steady state was achieved. After that, the injection rate was increased in steps. For each injection rate, water was continuously injected until a steady state was achieved and then increased to the next injection rate. For each injection rate, the displacement process of oil and water in the micromodel was captured by a digital video camera. Experimental results show that water breakthrough occurs in pure-fracture channels earlier than that in fracture-cavity channels. The wettability and pore networks of fractures and vugs have a significant impact on the distribution of trapped oil. Oil is preferential to be trapped in the oil-wet zone and the zone where deviation from the mainstream line starts. Residual oil saturation shows no noticeable change with relatively low injection rates. However, when the injection rate exceeds a critical value, residual oil saturation decreases with an increase in the injection rate.

References

References
1.
Chen
,
P.
, and
Mohanty
,
K. K.
,
2013
, “
Surfactant-Mediated Spontaneous Imbibition in Carbonate Rocks at Harsh Reservoir Conditions
,”
SPE J.
,
18
(
1
), pp.
124
133
.
2.
Gong
,
Y.
, and
Gu
,
Y.
,
2015
, “
Experimental Study of Water and CO2 Flooding in the Tight Main Pay Zone and Vuggy Residual Oil Zone of a Carbonate Reservoir
,”
Energy Fuels
,
29
(
10
), pp.
6213
6223
.
3.
Li
,
B.
,
Tan
,
X.
,
Wang
,
F.
,
Lian
,
P.
,
Gao
,
W.
, and
Li
,
Y.
,
2017
, “
Fracture and Vug Characterization and Carbonate Rock Type Automatic Classification Using X-Ray CT Images
,”
J. Pet. Sci. Eng.
,
153
, pp.
88
96
.
4.
Ma
,
X.
,
Mou
,
J.
,
Lin
,
H.
,
Jiang
,
F.
,
Liu
,
K.
, and
Zhao
,
X.
,
2017
, “
Lattice Boltzmann Simulation of Wormhole Propagation in Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042002
.
5.
Li
,
A.
,
Ren
,
X.
,
Fu
,
S.
,
Lv
,
J.
,
Li
,
X.
,
Liu
,
Y.
, and
Lu
,
Y.
,
2018
, “
The Experimental Study on the Flooding Regularities of Various CO2 Flooding Modes Implemented on Ultralow Permeability Cores
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072902
.
6.
Gomaa
,
A. M.
,
Nino-Penaloza
,
A.
,
Cutler
,
J.
, and
Chaudhary
,
S.
,
2018
, “
Insights of Wormhole Propagation During Carbonate Acidizing: A Comparison Between Constant Injection Pressure Versus Constant Volumetric Rate
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102906
.
7.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
8.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Chai
,
Z.
,
Wang
,
Y.
,
Patil
,
S.
,
Li
,
M.
, and
Yu
,
H.
, “
Analytical Interference Testing Analysis of Multi-Segment Horizontal Well
,”
J. Pet. Sci. Eng.
,
171
, pp.
919
927
.
9.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
31
39
.
10.
Meng
,
Q.
,
Cai
,
Z.
,
Cai
,
J.
, and
Yang
,
F.
,
2019
, “
Oil Recovery by Spontaneous Imbibition From Partially Water-Covered Matrix Blocks With Different Boundary Conditions
,”
J. Pet. Sci. Eng.
,
172
, pp.
454
464
.
11.
Sun
,
Q.
,
Zhang
,
N.
,
Fadlelmula
,
M.
, and
Wang
,
Y.
,
2018
, “
Structural Regeneration of Fracture-Vug Network in Naturally Fractured Vuggy Reservoirs
,”
J. Pet. Sci. Eng.
,
165
, pp.
28
41
.
12.
Wang
,
S.
,
Cheng
,
L.
,
Huang
,
S.
,
Xue
,
Y.
,
Bai
,
M.
,
Wu
,
Y.
,
Jia
,
P.
,
Sun
,
Z.
, and
Wang
,
J.
,
2019
, “
A Semi-Analytical Method for Modeling Two-Phase Flow Behavior in Fractured Carbonate Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072902
.
13.
Lucia
,
F. J.
,
1983
, “
Petrophysical Parameters Estimated From Visual Descriptions of Carbonate Rocks: A Field Classification of Carbonate Pore Space
,”
J. Pet. Technol.
,
35
(
3
), pp.
629
637
.
14.
Lucia
,
F. J.
,
1995
, “
Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization
,”
AAPG Bull.
,
79
(
9
), pp.
1275
1300
.
15.
Vik
,
B.
,
Sylta
,
K. E.
, and
Skauge
,
A.
,
2013
, “
Evaluation of Representative Elementary Volume for a Vuggy Carbonate Rock-Part II: Two-Phase Flow
,”
J. Pet. Sci. Eng.
,
112
, pp.
48
60
.
16.
Vik
,
B.
,
Sylta
,
K. E.
, and
Skauge
,
A.
,
2012
, “
Connectivity in Vuggy Carbonates, New Experimental Methods and Applications
,”
Transp. Porous Media
,
93
(
3
), pp.
561
575
.
17.
Mount
,
G. J.
,
Comas
,
X.
, and
Cunningham
,
K. J.
,
2014
, “
Characterization of the Porosity Distribution in the Upper Part of the Karst Biscayne Aquifer Using Common Offset Ground Penetrating Radar, Everglades National Park, Florida
,”
J. Hydrol.
,
515
, pp.
223
236
.
18.
Faisal
,
T. F.
,
Awedalkarim
,
A.
,
Chevalier
,
S.
,
Jouini
,
M. S.
, and
Sassi
,
M.
,
2017
, “
Direct Scale Comparison of Numerical Linear Elastic Moduli With Acoustic Experiments for Carbonate Rock X-Ray CT Scanned at Multi-Resolutions
,”
J. Pet. Sci. Eng.
,
152
, pp.
653
663
.
19.
Xia
,
L.
,
Zheng
,
Y.
, and
Yu
,
Q.
,
2016
, “
Estimation of the REV Size for Blockiness of Fractured Rock Masses
,”
Comput. Geotech.
,
76
, pp.
83
92
.
20.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
21.
Jia
,
P.
,
Cheng
,
L.
,
Huang
,
S.
, and
Wu
,
Y.
,
2016
, “
A Semi-Analytical Model for the Flow Behavior of Naturally Fractured Formations With Multi-Scale Fracture Networks
,”
J. Hydrol.
,
537
, pp.
208
220
.
22.
Dabbouk
,
C.
,
Liaqat
,
A.
,
Williams
,
G.
, and
Beattie
,
G.
,
2002
, “
Waterflood in Vuggy Layer of a Middle East Reservoir-Displacement Physics Understood
,”
Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, United Arab Emirates
,
Oct. 13–16
, SPE Paper No. SPE-78530-MS.
23.
Singh
,
H.
, and
Srinivasan
,
S.
,
2014
, “
Scale up of Reactive Processes in Heterogeneous Media-Numerical Experiments and Semi-analytical Modeling
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, Oklahoma, USA
,
Apr. 12–16
, SPE Paper No. SPE-169133-MS.
24.
Rangel-German
,
E. R.
, and
Kovscek
,
A. R.
,
2006
, “
A Micromodel Investigation of Two-Phase Matrix-Fracture Transfer Mechanisms
,”
Water Resour. Res.
,
42
(
3
), p.
W03401
.
25.
Yarveicy
,
H.
, and
Haghtalab
,
A.
,
2018
, “
Effect of Amphoteric Surfactant on Phase Behavior of Hydrocarbon-Electrolyte-Water System—An Application in Enhanced Oil Recovery
,”
J. Disper. Sci. Technol.
,
39
(
4
), pp.
522
530
.
26.
Kazemifar
,
F.
,
Blois
,
G.
,
Kyritsis
,
D. C.
, and
Christensen
,
K. T.
,
2015
, “
A Methodology for Velocity Field Measurement in Multiphase High-Pressure Flow of CO2 and Water in Micromodels
,”
Water Resour. Res.
,
51
(
4
), pp.
3017
3029
.
27.
Kazemifar
,
F.
, and
Kyritsis
,
D. C.
,
2014
, “
Experimental Investigation of Near-Critical CO2 Tube-Flow and Joule-Thompson Throttling for Carbon Capture and Sequestration
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
161
170
.
28.
Karadimitriou
,
N. K.
,
Hassanizadeh
,
S. M.
,
Joekar-Niasar
,
V.
, and
Kleingeld
,
P. J.
,
2014
, “
Micromodel Study of Two-Phase Flow Under Transient Conditions: Quantifying Effects of Specific Interfacial Area
,”
Water Resour. Res.
,
50
(
10
), pp.
8125
8140
.
29.
Jamaloei
,
B. Y.
,
Asghari
,
K.
,
Kharrat
,
R.
, and
Ahmadloo
,
F.
,
2010
, “
Pore-Scale Two-Phase Filtration in Imbibition Process Through Porous Media at High- and Low-Interfacial Tension Flow Conditions
,”
J. Pet. Sci. Eng.
,
72
(
3–4
), pp.
251
269
.
30.
Mahani
,
H.
,
Berg
,
S.
,
Ilic
,
D.
,
Bartels
,
W.
, and
Joekar-Niasar
,
V.
,
2015
, “
Kinetics of Low-Salinity-Flooding Effect
,”
SPE J.
,
20
(
1
), pp.
8
20
.
31.
Kazemifar
,
F.
,
Blois
,
G.
,
Kyritsis
,
D. C.
, and
Christensen
,
K. T.
,
2016
, “
Quantifying the Flow Dynamics of Supercritical CO2-Water Displacement in a 2D Porous Micromodel Using Fluorescent Microscopy and Microscopic PIV
,”
Adv. Water Resour.
,
95
, pp.
352
368
.
32.
Buchgraber
,
M.
,
Al-Dossary
,
M.
,
Ross
,
C. M.
, and
Kovscek
,
A. R.
,
2016
, “
Creation of a Dual-Porosity Micromodel for Pore-Level Visualization of Multiphase Flow
,”
J. Pet. Sci. Eng.
,
86–87
, pp.
27
38
.
33.
Er
,
V.
,
Babadagli
,
T.
, and
Xu
,
Z.
,
2010
, “
Pore-Scale Investigation of the Matrix-Fracture Interaction During CO2 Injection in Naturally Fractured Oil Reservoirs
,”
Energy Fuels
,
24
(
2
), pp.
1421
1430
.
34.
Chilingar
,
G. V.
, and
Yen
,
T. F.
,
1983
,
“Some Notes on Wettability and Relative Permeabilities of Carbonate Reservoir Rocks, II
,”
Energy Sources
,
7
(
1
), pp.
67
75
.
35.
Morrow
,
N. R.
,
Chatzis
,
I.
, and
Taber
,
J. J.
,
1988
, “
Entrapment and Mobilization of Residual Oil in Bead Packs
,”
SPE Reserv. Eng.
,
3
(
03
), pp.
927
934
.
You do not currently have access to this content.