Due to perspective of biomass usage as a viable source of energy, this paper suggests a potential theoretical approach for studying multiregion nonadiabatic premixed flames with counterflow design crossing through the mixture of air (oxidizer) and lycopodium particles (biofuel). In this research, convective and radiative heat losses are analytically described. Due to the properties of lycopodium, roles of drying and vaporization are included so that the flame structure is created from preheating, drying, vaporization, reaction, and postflame regions. To follow temperature profile and mass fraction of the biofuel in solid and gaseous phases, dimensionalized and nondimensionalized forms of mass and energy balances are expressed. To ensure the continuity and calculate the positions of drying, vaporization, and flame fronts, interface matching conditions are derived employing matlab and mathematica software. For validation purpose, results for temperature profile is compared with those provided in a previous research study and an appropriate is observed under the same conditions. Finally, changes in flame velocity, flame temperature, solid and gaseous fuel mass fractions, and particle size with position measured from the position of stagnation plane, strain rate, and heat transfer coefficient in the presence/absence of losses are evaluated.

References

References
1.
McAllister
,
S.
,
Chen
,
J. Y.
, and
Fernandez-Pello
,
A. C.
,
2011
,
Fundamentals of Combustion Processes
,
Springer
,
New York
.
2.
Mohammadi
,
M.
,
Bidabadi
,
M.
,
Khalili
,
H.
, and
Poorfar
,
A. K.
,
2016
, “
Modeling Counterflow Combustion of Dust Particle Cloud in Heterogeneous Media
,”
J. Energy Eng.
,
143
(
2
), p.
04016040
.
3.
Cherubini
,
F.
,
2010
, “
The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals
,”
Energy Convers. Manage.
,
51
(
7
), pp.
1412
1421
.
4.
Bidabadi
,
M.
,
Haghiri
,
A.
, and
Rahbari
,
A.
,
2010
, “
The Effect of Lewis and Damköhler Numbers on the Flame Propagation Through Micro-Organic Dust Particles
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
534
542
.
5.
Sanchirico
,
R.
,
Russo
,
P.
,
Saliva
,
A.
,
Doussot
,
A.
,
Di Sarli
,
V.
, and
Di Benedetto
,
A.
,
2015
, “
Explosion of Lycopodium-Nicotinic Acid–Methane Complex Hybrid Mixtures
,”
J. Loss Prev. Process Ind.
36
(
July
), pp.
505
508
.
6.
Haghiri
,
A.
, and
Bidabadi
,
M.
,
2010
, “
Modeling of Laminar Flame Propagation Through Organic Dust Cloud With Thermal Radiation Effect
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1446
1456
.
7.
Bidabadi
,
M.
, and
Esmaeilnejad
,
A.
,
2015
, “
An Analytical Model for Predicting Counterflow Flame Propagation Through Premixed Dust Micro Particles With Radiative Heat Loss
,”
J. Loss Prev. Process Ind.
35
(
May
), pp.
182
199
.
8.
Bidabadi
,
M.
,
Montazerinejad
,
S.
, and
Fanaee
,
S. A.
,
2014
, “
The Influence of Radiation on the Flame Propagation Through Micro Organic Dust Particles With Non-Unity Lewis Number
,”
J. Energy Inst.
,
87
(
4
), pp.
354
366
.
9.
Sanchirico
,
R.
,
Russo
,
P.
,
Di Sarli
,
V.
, and
Di Benedetto
,
A.
,
2015
, “
On the Explosion and Flammability Behavior of Mixtures of Combustible Dusts
,”
Process Saf. Environ. Prot.
94
(
March
), pp.
410
419
.
10.
Bidabadi
,
M.
,
Mostafavi
,
S. A.
,
Dizaji
,
F. F.
, and
Beidaghy
,
D. H.
,
2014
, “
An Analytical Model for Flame Propagation Through Moist Lycopodium Particles With Non-Unity Lewis Number
,”
Int. J. Eng.
,
27
(
5
), pp.
793
802
.
11.
Soltaninejad
,
M.
,
Dizaji
,
F. F.
,
Dizaji
,
H. B.
, and
Bidabadi
,
M.
,
2015
, “
Micro-Organic Dust Combustion Considering Particles Thermal Resistance
,”
J. Central South Univ.
,
22
(
7
), pp.
2833
2840
.
12.
Han
,
O. S.
,
Yashima
,
M.
,
Matsuda
,
T.
,
Matsui
,
H.
,
Miyake
,
A.
, and
Ogawa
,
T.
,
2000
, “
Behavior of Flames Propagating Through Lycopodium Dust Clouds in a Vertical Duct
,”
J. Loss Prev. Process Ind.
,
13
(
6
), pp.
449
457
.
13.
Josh
,
N. D.
, and
Berlad
,
A. L.
,
1986
, “
Gravitational Effects on Stabilized, Premixed, Lycopodium-Air Flames
,”
Combust. Sci. Technol.
,
47
(
1–2
), pp.
55
68
.
14.
Goroshin
,
S.
,
Kolbe
,
M.
, and
Lee
,
J. H.
,
2000
, “
Flame Speed in a Binary Suspension of Solid Fuel Particles
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2811
2817
.
15.
Bidabadi
,
M.
,
Dizaji
,
H. B.
,
Dizaji
,
F. F.
, and
Mostafavi
,
S. A.
,
2015
, “
A Parametric Study of Lycopodium Dust Flame
,”
J. Eng. Math.
,
92
(
1
), pp.
147
165
.
16.
Rahbari
,
A.
,
Shakibi
,
A.
, and
Bidabadi
,
M.
,
2015
, “
A Two-Dimensional Analytical Model of Laminar Flame in Lycopodium Dust Particles
,”
Korean J. Chem. Eng.
,
32
(
9
), pp.
1798
1803
.
17.
Mason
,
W. E.
, and
Wilson
,
M. J.
,
1967
, “
Laminar Flames of Lycopodium Dust in Air
,”
Combust. Flame
,
11
(
3
), pp.
195
200
.
18.
Bidabadi
,
M.
,
Yaghoubi
,
E.
,
Harati
,
M.
,
Shahryari
,
G.
, and
Akhoondian
,
B.
,
2015
, “
Effect of Wall Temperature and Random Distribution of Micro Organic Dust Particles on Their Combustion Parameters
,”
J. Central South Univ.
,
22
(
10
), pp.
3888
3899
.
19.
Rockwell
,
S. R.
, and
Rangwala
,
A. S.
,
2013
, “
Modeling of Dust air Flames
,”
Fire Safety J.
59
(
July
), pp.
22
29
.
20.
Bidabadi
,
M.
,
Dizaji
,
F. F.
,
Dizaji
,
H. B.
, and
Ghahsareh
,
M. S.
,
2014
, “
Investigation of Effective Dimensionless Numbers on Initiation of Instability in Combustion of Moisty Organic Dust
,”
J. Central South Univ.
,
21
(
1
), pp.
326
337
.
21.
Darabiha
,
N.
,
Candel
,
S. M.
, and
Marble
,
F. E.
,
1986
, “
The Effect of Strain Rate on a Premixed Laminar Flame
,”
Combust. Flame
,
64
(
2
), pp.
203
217
.
22.
Mostafavi
,
S. A.
,
Salavati
,
S.
,
Dizaji
,
H. B.
, and
Bidabadi
,
M.
,
2015
, “
Pyrolysis and Combustion Kinetics of Lycopodium Particles in Thermogravimetric Analysis
,”
J. Central South Univ.
,
22
(
9
), pp.
3409
3417
.
23.
Proust
,
C.
,
2006
, “
Flame Propagation and Combustion in Some Dust-Air Mixtures
,”
J. Loss Prev. Process Ind.
,
19
(
1
), pp.
89
100
.
24.
Bidabadi
,
M.
,
Vakilabadi
,
M. A.
,
Poorfar
,
A. K.
,
Monteiro
,
E.
,
Rouboa
,
A.
, and
Rahbari
,
A.
,
2016
, “
Mathematical Modeling of Premixed Counterflow Combustion of Organic Dust Cloud
,”
Renew. Energy
,
92
(
July
), pp.
376
384
.
25.
Rahbari
,
A.
,
Wong
,
K. F.
,
Vakilabadi
,
M. A.
,
Poorfar
,
A. K.
, and
Afzalabadi
,
A.
,
2017
, “
Theoretical Investigation of Particle Behavior on Flame Propagation in Lycopodium Dust Cloud
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012202
.
26.
Buckmaster
,
J.
, and
Mikolaitis
,
D.
,
1982
, “
The Premixed Flame in a Counterflow
,”
Combust. Flame
,
47
, pp.
191
204
.
27.
Seshadri
,
K.
,
Berlad
,
A. L.
, and
Tangirala
,
V.
,
1992
, “
The Structure of Premixed Particle-Cloud Flames
,”
Combust. Flame
,
89
(
3–4
), pp.
333
342
.
28.
Han
,
O. S.
,
Yashima
,
M.
,
Matsuda
,
T.
,
Matsui
,
H.
,
Miyake
,
A.
, and
Ogawa
,
T.
,
2001
, “
A Study of Flame Propagation Mechanisms in Lycopodium Dust Clouds Based on Dust Particles’ Behavior
,”
J. Loss Prev. Process Ind.
,
14
(
3
), pp.
153
160
.
29.
Moghadasi
,
H.
,
Rahbari
,
A.
,
Bidabadi
,
M.
,
Poorfar
,
A. K.
, and
Farhangmehr
,
V.
,
2019
, “
A Mathematical Investigation of Premixed Lycopodium Dust Flame in a Small Furnace
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032201
.
30.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
.
31.
Ayache
,
A.
, and
Birouk
,
M.
,
2019
, “
Experimental Study of Turbulent Burning Velocity of Premixed Biogas Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032202
.
32.
Wierzba
,
P.
,
Karim
,
G. A.
, and
Wierzba
,
I.
,
1995
, “
An Analytical Examination of the Combustion of a Turbulent Jet in an Environment of Air Containing a Premixed Fuel or a Diluent
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
234
238
.
33.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
34.
Bidabadi
,
M.
,
Panahifar
,
P.
, and
Sadeghi
,
S.
,
2018
, “
Analytical Development of a Model for Counter-Flow Non-Premixed Flames With Volatile Biofuel Particles Considering Drying and Vaporization Zones With Finite Thicknesses
,”
Fuel
,
231
(
November
), pp.
172
186
.
35.
Seshadri
,
K.
, and
Trevino
,
C.
,
1989
, “
The Influence of the Lewis Numbers of the Reactants on the Asymptotic Structure of Counterflow and Stagnant Diffusion Flames
,”
Combust. Sci. Technol.
,
64
(
4–6
), pp.
243
261
.
36.
Daou
,
J.
,
2011
, “
Strained Premixed Flames: Effect of Heat-Loss, Preferential Diffusion and Reversibility of the Reaction
,”
Combust. Theory Model.
,
15
(
4
), pp.
437
454
.
37.
Sreedevi
,
P.
,
Reddy
,
P. S.
, and
Chamkha
,
A. J.
,
2017
, “
Heat and Mass Transfer Analysis of Nanofluid Over Linear and Non-Linear Stretching Surfaces With Thermal Radiation and Chemical Reaction
,”
Powder Technol.
315
(
June
), pp.
194
204
.
38.
Law
,
C. K.
,
Sung
,
C. J.
,
Yu
,
G.
, and
Axelbaum
,
R. L.
,
1994
, “
On the Structural Sensitivity of Purely Strained Planar Premixed Flames to Strain Rate Variations
,”
Combust. Flame
,
98
(
1
), pp.
139
154
.
This content is only available via PDF.
You do not currently have access to this content.