Centrifugal compressors have broad applications in gas compression processes, especially in automobile turbocharger. During the turbocharger installation, there are many installation limitations in the compressor stage. Due to the restriction in the size of the engine bay, it always has limitations of installation for turbochargers. The compressor package always requests to modify the compressor geometry to fit specific constraints. The volute is the largest geometry of the turbocharger package in most of the case. Very often modifications of the volute were performed to meet the space constraints. In this study, the authors investigated the compressor performance for an initially designed volute and a modified volute. The study followed by an on engine performance comparisons, compressor performance gas stand tests and computational fluid fynamics (CFD) analysis. The studies provided the performance impacts of the local volute deformation due to installation constraints, i.e., a kink in a volute. The studies showed the local volute kink has small implications on compressor performance when the maximum kink depth is less than 10% of the local volute hydraulic diameter. The numerical analysis is in favorable agreements with experiments. The results of this study can be used as a basic guideline for local deformation performance impacts for the future turbocharger compressor volute modifications.

References

References
1.
Japikse
,
D.
,
1996
, “
Centrifugal Compressor Design and Performance
,”
Concepts ETI
,
VT, USA
.
2.
Ayder
,
E.
, and
Van den Braembussche
,
R. A.
,
1991
, “
Experimental Study of the Swirling Flow in the Internal Volute of a Centrifugal Compressor
,” ASME Paper No. 91-GT-7.
3.
Hagelstein
,
D.
,
Hillewaert
,
K.
,
Van den Braembussche
,
R. A.
,
Engeda
,
A.
,
Kelper
,
R.
, and
Rautenberg
,
M.
,
2000
, “
Experimental and Numerical Investigation of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
,
122
(
1
), pp.
22
31
.
4.
Xu
,
C.
,
Amano
,
R. S.
, and
Lee
,
E. K.
,
2004
, “
Investigation of an Axial Fan—Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects
,”
JSME Int. J. Series B
,
47
(
1
), pp.
75
90
.
5.
Kenny
,
D. P.
,
1984
, “
The History and Future of the Centrifugal Compressor in Aviation Gas Turbine
,”
1st Cliff Garrett Turbomachinery Award Lecture
, Society of Automotive Engineers, SAE/SP-804/602.
6.
Xu
,
C.
, and
Amano
,
R. S.
,
2001
, “
On the Development of Turbine Blade Aerodynamic Design System
,”
ASME IGTI Turbo & Expo
, 2001-GT-0443.
7.
Xu
,
C
, and
Amano
,
R. S.
,
2002
, “
Turbomachinery Blade Aerodynamic Design and Optimization
,” GT-2002-30541, 2002.
8.
Weber
,
C. R.
, and
Koronowski
,
M. E.
,
1987
, “
Meanline Performance Prediction of Volutes in Centrifugal Compressors
,”
ASME 31st Gas Turbine Conference and Exhibit
,
Dusseldorf, Germany
, 86-GT-216.
9.
Xu
,
C.
, and
Muller
,
M.
,
2005
, “
Development and Design of a Centrifugal Compressor Volute
,”
Int. J. Rotating Mach.
,
2005
(
3
), pp.
190
196
.
10.
Xu
,
C.
,
2007
, “
Design Experience and Considerations for Centrifugal Compressor Development
,”
J. Aerosp. Eng.
,
221
(
2
), pp.
165
311
.
11.
Xu
,
C.
, and
Amano
,
R. S.
,
2009
, “
Computational Analysis of Volute Tongue Shapes to Compressor Performance by Using Different Turbulence Models
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
11
(
2
), pp.
85
99
.
12.
Xu
,
C.
, and
Amano
,
R. S.
,
2017
, “
Effects of Asymmetric Radial Clearance on Performance of a Centrifugal Compressor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), pp.
052003
0520016
.
13.
Xu
,
C.
, and
Amano
,
R. S.
,
2017
, “
Centrifugal Compressor Performance Improvements Through Impeller Splitter Location
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), pp.
051201
0512016
.
14.
Choi
,
D.
, and
Knight
,
C. J.
,
1989
, “
Computations of 3 D Viscous Flows in Rotating Turbomachinery Blades
,” AIAA-89-0323.
15.
Hah
,
C.
, and
Wennerstrom
,
A. J.
,
1990
, “
Three-Dimensional Flowfields Inside a Transonic Compressor With Swept Blade
,” 90-GT-359.
16.
Kunz
,
R. F.
, and
Lakshminarayana
,
B.
,
1990
, “
Computation of Supersonic and Low Subsonic Cascade Flows Using an Explicit Navier-Stokes Technique and the K-ε Turbulence Model
,” ANSA CP-10045.
17.
Xu
,
C.
, and
Amano
,
R. S.
,
2009
, “
Development of a Low Flow Coefficient Single Stage Centrifugal Compressor
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
4
), pp.
282
289
.
18.
Gonzalez
,
J.
,
Fernandez
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
, pp.
348
355
.
19.
Ansys Inc.
,
2013
, ansys cfx version 15.0.0.
20.
Casey
,
M. V.
, and
Fesich
,
T. M.
,
2009
, “
On the Efficiency of Compressors With Adiabatic Flows
,”
Proceedings of the ASME Turbo Expo
,
Orlando
,
FL
,
June 8–12
, GT 2009-59015.
21.
Baines
,
N.
,
Wygant
,
K. D.
, and
Antonis
,
D.
,
2009
, “
The Analysis of Heat Transfer in Automotive Turbochargers
,”
Proceedings of the ASME Turbo Expo
,
Orlando
,
FL
,
June 8–12
, GT2009-59353.
You do not currently have access to this content.