With the development of petroleum industry, it needs an efficient drill method such as under balanced drilling (UBD) to enhance the rate of penetration (ROP). However, borehole instability is a problem that UBD must face. The coiled tubing partial underbalanced drilling (CT-PUBD) is proposed to try to solve this problem while keeping an underbalanced condition with high ROP. This paper analyzes the laws of cuttings transport in the narrow annulus focus on this new technique through the simulations and experiments. From the results of simulations, it obtains that the particle velocity declines with the increase of rotational speed and increases with the increase of flow rate. The particles become concentrated as the flow rate increases, and the high flow rate limits particles in a small area. The particle distribution undergoes a process of concentration, dispersion, and concentration as the rotational speed increases. The high rotational speed makes particles deviate from the high fluid velocity area, which causes low particle velocity. The relationships between particle velocity and rotational speed and between particle velocity and flow rate are fitted through the equations, respectively. The phenomenon of collision of particles, sinking and rising of particles, and variation of particle velocity are observed in the experiments. The error between the particle velocity in the experiment and numerical simulation is less than 8.5%. This paper is an exploratory study conducted for the cuttings transport in narrow annulus.

References

References
1.
Rui
,
Z.
,
Peng
,
F.
,
Ling
,
K.
,
Chang
,
H.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
12
20
.
2.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Chun
,
J.
,
Li
,
Y.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Comprehensive Investigation on Performance of Oil and Gas Development in Nigeria: Technical and Non-Technical Analyses
,”
Energy
,
158
, pp. 666–680.
3.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
4.
Anderson
,
E. E.
,
Maurer
,
W. C.
,
Hood
,
M.
,
Cooper
,
G.
, and
Cook
,
N.
,
1990
, Deep Drilling Basic Research (System Description, Vol.
4
), U.S. Department of Energy, Oak Ridge, TN, Report No.
GRI-90/0265.4
.
5.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
F.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
,
39
, pp.
44
53
.
6.
Cui
,
G.
,
Ren
,
S.
,
Rui
,
Z.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2018
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
,
227
, pp.
49
63
.
7.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
8.
Batako
,
A. D.
,
Babitsky
,
V. I.
, and
Halliwell
,
N. A.
,
2004
, “
Modelling of Vibro-Impact Penetration of Self-Exciting Percussive-Rotary Drill Bit
,”
J. Sound Vib.
,
271
(
1
), pp.
209
225
.
9.
Kamel
,
M. A.
,
Elkatatny
,
S.
,
Mysorewala
,
M. F.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2018
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032908
.
10.
Wang
,
X.
,
Ni
,
H.
,
Wang
,
R.
,
Zhang
,
L.
, and
Wang
,
P.
,
2019
, “
Drag-Reduction and Resonance Problems of a Jointed Drillstring in the Presence of an Axial Excitation Tool
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032904
.
11.
Fair
,
J.
,
1981
, “
Development of High-Pressure Abrasive-Jet Drilling
,”
J. Pet. Technol.
,
33
(
8
), pp.
1379
1388
.
12.
Doan
,
Q. T.
,
2003
, “
Modeling of Transient Cuttings Transport in Underbalanced Drilling (UBD)
,”
SPE J.
,
8
(
2
), pp.
160
170
.
13.
Kolle
,
J.
, and
Marvin
,
M.
,
1999
, “
Hydropulses Increase Drilling Penetration Rates
,”
Oil Gas J.
,
97
(
13
), pp.
33
37
.
14.
Wu
,
X.
,
Huang
,
Z.
,
Li
,
G.
,
Li
,
R.
,
Yan
,
P.
,
Deng
,
X.
,
Mu
,
K.
, and
Dai
,
X.
,
2018
, “
Experiment on Coal Breaking With Cryogenic Nitrogen Jet
,”
J. Pet. Sci. Eng.
,
169
, pp. 405–415.
15.
Cai
,
C.
,
Yang
,
Y.
,
Liu
,
J.
,
Gao
,
F.
,
Gao
,
Y.
, and
Zhang
,
Z.
,
2018
, “
Downhole Transient Flow Field and Heat Transfer Characteristics During Drilling With Liquid Nitrogen Jet
,”
ASME J. Energy Resour. Technol.
,
410
(12), p. 122902.
16.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
17.
Melamed
,
Y.
,
Kiselev
,
A.
,
Gelfgat
,
M.
,
Dreesen
,
D.
, and
Blacic
,
J.
,
2000
, “
Hydraulic Hammer Drilling Technology: Developments and Capabilities
,”
ASME J. Energy Resour. Technol.
,
122
(
1
), pp.
1
7
.
18.
Gupta
,
A.
,
2012
, “
Performance Optimization of Abrasive Fluid Jet for Completion and Stimulation of Oil and Gas Wells
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021001
.
19.
Johnson
,
V.
,
Chahine
,
G.
,
Lindenmuth
,
W.
,
Conn
,
A.
,
Frederick
,
G.
, and
Giac-chino
,
G.
,
1984
, “
Cavitating and Structured Jets for Mechanical Bits to Increase Drilling Rate——Part I: Theory and Concepts
,”
ASME J. Energy Resour. Technol.
,
106
(
2
), pp.
282–288
.
20.
Rumzan
,
I.
, and
Schmitt
,
D. R.
,
2001
, “
The Influence of Well Bore Fluid Pressure on Drilling Penetration Rates and Stress Dependent Strength
,” U.S. Symposium on Rock Mechanics (USRMS), Washington, DC, July 7–10, Paper No.
ARMA-01-0911
.https://www.onepetro.org/conference-paper/ARMA-01-0911
21.
Ying
,
Z.
,
Zhanghua
,
L.
,
Abdelal
,
G. F.
, and
Tiejun
,
L.
,
2018
, “
Numerical and Experimental Investigation on Flow Capacity and Erosion Wear of Blooey Line in Gas Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054501
.
22.
Li
,
G.
,
Ren
,
W.
,
Meng
,
Y.
,
Wang
,
C.
, and
Wei
,
N.
,
2014
, “
Micro-Flow Kinetics Research on Water Invasion in Tight Sandstone Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
20
, pp.
184
191
.
23.
Ren
,
W.
,
Li
,
G.
,
Tian
,
S.
,
Sheng
,
M.
, and
Geng
,
L.
,
2016
, “
Analytical Modelling of Hysteretic Constitutive Relations Governing Spontaneous Imbibition of Fracturing Fluid in Shale
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
925
933
.
24.
Bennion
,
D. B.
,
Thomas
,
F. B.
,
Bietz
,
R. F.
, and
Bennion
,
D. W.
,
1996
, “
Underbalanced Drilling: Praises and Perils
,”
SPE Drill. Completion
,
13
(
4
), pp.
214
222
.
25.
Zhang
,
Z.
,
Xiong
,
Y.
, and
Guo
,
F.
,
2018
, “
Analysis of Wellbore Temperature Distribution and Influencing Factors During Drilling Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092901
.
26.
Shi
,
H.
,
Ji
,
Z.
,
Zhao
,
H.
,
Chen
,
Z.
, and
Zhang
,
H.
,
2018
, “
An Experimental System for Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) Technique
,”
Rev. Sci. Instrum.
,
89
(
5
), p.
055108
.
27.
Huaizhong
,
S.
,
Heqian
,
Z.
, and
Zhenliang
,
C.
,
2017
, “
Structure Design and Flow Field Simulation of Partial Underbalanced Drilling Reflow Device
,”
China Pet. Mach.
,
45
(12), pp.
32
37
(in Chinese).
28.
Egenti
,
N. B.
, 2014, “
Understanding Drill-Cuttings Transportation in Deviated and Horizontal Wells
,”
SPE Nigeria Annual International Conference and Exhibition
, Lagos, Nigeria, Aug. 5–7, SPE Paper No.
SPE-172835-MS
.
29.
Hall
,
H. N.
,
Thompson
,
H.
, and
Nuss
,
F.
,
1950
, “Ability of Drilling Mud To Lift Bit Cuttings,”
J. Pet. Technol.
,
2
(2), p. 950035-G.
30.
O'Brien
,
T.
, and
Dobson
,
M.
, 1985, “
Hole Cleaning: Some Field Results
,”
SPE/IADC Drilling Conference
, New Orleans, LA, Mar. 5–7, Paper No.
SPE-13442-MS
.
31.
McEachern
,
D. W.
,
1966
, “
Axial Laminar Flow of a Non-Newtonian Fluid in an Annulus
,”
AIChE J.
,
12
(
2
), pp.
328
332
.
32.
Thomas
,
D. G.
,
1965
, “
Transport Characteristics of Suspension: VIII. A Note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles
,”
J. Colloid Sci.
,
20
(
3
), pp.
267
277
.
33.
Tomren
,
P. H.
,
Iyoho
,
A. W.
, and
Azar
,
J. J.
,
1986
, “
Experimental Study of Cuttings Transport in Directional Wells
,”
SPE Drill. Eng.
,
1
(
1
), pp.
43
56
.
34.
Zhou
,
L.
,
2008
, “
Hole Cleaning During Underbalanced Drilling in Horizontal and Inclined Wellbore
,”
SPE Drill. Completion
,
23
(
3
), pp.
267
273
.
35.
Ozbayoglu
,
M.
,
Sorgun
,
M.
,
Saasen
,
A.
, and
Svanes
,
K.
,
2010
, “
Hole Cleaning Performance of Light-Weight Drilling Fluids During Horizontal Underbalanced Drilling
,”
J. Can. Pet. Technol.
,
49
(
4
), pp.
21
26
.
36.
Cruz
,
D. V.
,
Rodriguez-Hernandez
,
H.
,
Cortes-Monroy
,
I.
,
Azpeitia-Hernandez
,
D.
, and
Blanco-Galan
,
J.
, 2000, “
Underbalanced Drilling Analysis of Naturally Fractured Mexican Fields Through 2D Multiphase Flow
,” SPE International Petroleum Conference and Exhibition in Mexico, Villahermosa, Mexico, Feb. 1–3, SPE Paper No.
SPE-59054-MS
.
37.
Chen
,
X.
,
Gao
,
D.
, and
Guo
,
B.
,
2016
, “
A Method for Optimizing Jet-Mill-Bit Hydraulics in Horizontal Drilling
,”
SPE J.
,
21
(
2
), pp.
416
422
.
38.
Chen
,
X.
,
Gao
,
D.
, and
Guo
,
B.
,
2016
, “
Optimal Design of Jet Mill Bit for Jet Comminuting Cuttings in Horizontal Gas Drilling Hard Formations
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
587
593
.
39.
Richard
,
B.
,
2003
, “
Microdrill Initiative Initial Market Evaluation
,” U.S. Department of Energy, Tulsa, OK,
epub
, pp. 9–11.
40.
Perry
,
K.
,
2009
, “
Microhole Coiled Tubing Drilling: A Low Cost Reservoir Access Technology
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
013104
.
41.
Sun
,
B.
,
Xiang
,
H.
,
Li
,
H.
, and
Li
,
X.
,
2017
, “
Modeling of the Critical Deposition Velocity of Cuttings in an Inclined-Slimhole Annulus
,”
SPE J.
,
22
(4), pp. 1213–1224.
42.
Popoff
,
B.
,
Popoff
,
B.
,
Braun
,
M.
, and
Braun
,
M.
,
2007
, “
A Lagrangian Approach to Dense Particulate Flows
,” Sixth International Conference on Multiphase Flow, Leipzig, Germany, July 9–13.
43.
Shih
,
T.-H.
,
1995
, “
A New κ-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
44.
Reynolds
,
W. C.
,
1987
, Fundamentals of Turbulence for Turbulence Modeling and Simulation, AGARD Report No.
ADP005793
.https://apps.dtic.mil/dtic/tr/fulltext/u2/p005793.pdf
45.
Kim
,
S. E.
,
Choudhury
,
D.
, and
Patel
,
B.
,
1999
,
Computations of Complex Turbulent Flows Using the Commercial Code Fluent
,
Springer
, Dordrecht,
The Netherlands
.
46.
Ozbayoglu
,
M. E.
,
Miska
,
S. Z.
,
Reed
,
T.
, and
Takach
,
N.
, 2004, “
Analysis of the Effects of Major Drilling Parameters on Cuttings Transport Efficiency for High-Angle Wells in Coiled Tubing Drilling Operations
,”
SPE/ICoTa Coiled Tubing Conference and Exhibition
, Houston, TX, Mar. 23–24, SPE Paper No.
SPE-89334-MS
.
47.
Qingsheng
,
M.
,
Xinqing
,
Z.
, and
Caixuan
,
G.
,
2001
, “
Drilling Fluid Technology for Underbalanced Drilling in Tahe Oilfield
,”
Drill. Fluid Completion Fluid
,
18
(
2
), pp.
30
32
(in Chinese).
You do not currently have access to this content.