Stable ranges of auto-ignition for the microcombustion of CH4 and CH4–H2 mixtures are identified numerically in a platinum-coated microcatalytic honeycomb reactor. Steady and transient simulations under pseudo-auto-thermal conditions were performed to investigate the coupling phenomenon between combustion and heat transfer in such microburner using ANSYS 17.2 coupled with a detailed chemkin reaction mechanism. The model was validated utilizing the available data in the literature on a similar microreactor, and the results showed good agreements. A certain amount of heat is furnished from outside at constant temperature from an external electric furnace to investigate the variations of localized self-ignition temperature while changing the flow rate and mixture strength. It was found that the ignition temperature for CH4–air mixtures is not affected by the mass flow rate. However, the ignition temperature of CH4–H2 air mixtures decreases while increasing the flow rate. The effect of equivalence ratio was studied to demonstrate the variations of flammability limits of the present microreactor. The equivalence ratio required for auto-ignition of CH4–air mixtures was found to be in the range from 0.4 up to 0.85 at a flow rate of 9.5 g/s. The reaction front moved from upstream to downstream under transient conditions matching with the reported experimental behavior in the literature.

References

References
1.
Yunfei
,
Y.
,
Ying
,
L.
,
Haojie
,
L.
,
Weipeng
,
H.
,
Yanrong
,
C.
,
Lixian
,
L.
, and
Zhongqing
,
Y.
,
2018
, “
Effect of Cavity Coupling Factors of Opposed Counter-Flow Microcombustor on the Methane-Fueled Catalytic Combustion Characteristics
,”
ASME J. Energy Resour. Technol.
, 141(2), p. 022202.
2.
Shilapuram
,
V.
,
Bagchi
,
B.
,
Ozalp
,
N.
, and
Davis
,
R.
,
2018
, “
Statistical Modeling of Hydrogen Production Via Carbonaceous Catalytic Methane Decomposition
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072006
.
3.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
4.
Amador
,
G.
,
Forero
,
J. D.
,
Rincon
,
A.
,
Fontalvo
,
A.
,
Bula
,
A.
,
Padilla
,
R. V.
, and
Orozco
,
W.
,
2017
, “
Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042205
.
5.
Ju
,
Y.
, and
Maruta
,
K.
,
2011
, “
Microscale Combustion: Technology Development and Fundamental Research
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
669
715
.
6.
Daou
,
J.
, and
Matalon
,
M.
,
2002
, “
Influence of Conductive Heat-Losses on the Propagation of Premixed Flames in Channels
,”
Combust. Flame
,
39
, pp.
128
321
.
7.
Daou
,
J.
, and
Matalon
,
M.
,
2001
, “
Flame Propagation in Poiseuille Flow Under Adiabatic Conditions
,”
Combust. Flame
,
49
, pp.
124
337
.
8.
Ju
,
Y.
, and
Xu
,
B.
,
2006
, “
Effects of Channel Width and Lewis Number on the Multiple Flame Regimes and Propagation Limits in Mesoscale
,”
Combust. Sci. Technol.
,
178
(10–11), pp.
1723
1753
.
9.
Jackson
,
T. L.
,
Buckmaster
,
J.
,
Lu
,
Z.
,
Kyritsis
,
D. C.
, and
Massa
,
L.
,
2007
, “
Flames in Narrow Circular Tubes
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
955
962
.
10.
Hua
,
J.
,
Wu
,
M.
, and
Kumar
,
K.
,
2005
, “
Numerical Simulation of the Combustion of Hydrogen–Air Mixture in Micro-Scaled Chambers
,”
Chem. Eng. Sci.
,
60
(
13
), pp.
3497
3506
.
11.
Norton
,
D. G.
, and
Vlachos
,
D. G.
,
2003
, “
Combustion Characteristics and Flame Stability at the Microscale: A CFD Study of Premixed Methane/Air Mixtures
,”
Chem. Eng. Sci.
,
58
(
21
), pp.
4871
4882
.
12.
Li
,
J.
, and
Choua
,
S. K.
,
2009
, “
A Numerical Study on Premixed Micro-Combustion of CH4–Air Mixture: Effects of Combustor Size, Geometry and Boundary Conditions on Flame Temperature
,”
Chem. Eng. Sci.
,
150
(
1
), pp.
213
222
.
13.
Karagiannidis
,
S.
,
Mantzaras
,
J.
, and
Jackson
,
G.
,
2007
, “
Hetero-/Homogeneous Combustion and Stability Maps in Methane-Fueled Catalytic Micro Reactors
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3309
3317
.
14.
Tang
,
A.
,
Xu
,
Y.
, and
Pan
,
J.
,
2015
, “
A Comparative Study on Combustion Characteristics of Methane, Propane and Hydrogen Fuels in a Micro-Combustor
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16587
16596
.
15.
Tang
,
A.
,
Xu
,
Y.
, and
Pan
,
J.
,
2015
, “
Combustion Characteristics and Performance Evaluation of Premixed Methane/Air With Hydrogen Addition in a Micro-Planar Combustor
,”
Chem. Eng. Sci.
,
131
, pp.
235
242
.
16.
Shabanian
,
S. R.
, and
Reza
,
S.
,
2010
, “
CFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber
,”
Iran. J. Chem. Chem. Eng.
,
29
(
4
), pp. 161–172.
17.
Li
,
J.
, and
Choua
,
S. K.
,
2009
, “
Study on Premixed Combustion in Cylindrical Micro Combustors: Transient Flame Behavior and Wall Heat Flux
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
764
773
.
18.
Sui
,
R.
,
Mantzaras
,
J.
, and
Bombach
,
R.
,
2017
, “
Hetero-/Homogeneous Combustion of Fuel-Lean Methane/Oxygen/Nitrogen Mixtures Over Rhodium at Pressures Up to 12 Bar
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4321
4328
.
19.
Xu
,
B.
, and
Ju
,
Y.
,
2005
, “
Concentration Slip and Its Impact on Heterogeneous Combustion in a Micro Scale Chemical Reactor
,”
Chem. Eng. Sci.
,
60
(13), pp.
3561
3572
.
20.
Xu
,
B.
, and
Ju
,
Y.
,
2006
, “
Theoretical and Numerical Studies of Non-Equilibrium Slip Effects on a Catalytic Surface
,”
Combust. Theory Modell.
,
10
(6), pp.
961
979
.
21.
Aghalayam
,
P.
,
Bui
,
P. A.
, and
Vlachos
,
D. G.
,
1998
, “
The Role of Radical Wall Quenching in Flame Stability and Wall Heat Flux: Hydrogen-Air Mixtures
,”
Combust. Theory Modell.
,
2
(4), pp.
515
530
.
22.
Norton
,
D. G.
, and
Vlachos
,
D. G.
,
2005
, “
Hydrogen Assisted Self-Ignition of Propane/Air Mixtures in Catalytic Micro-Burners
,”
Proc. Combust. Inst.
,
30
(2), pp.
2473
2430
.
23.
Sui
,
R.
,
Mantzaras
,
J.
, and
Bombach
,
R.
,
2017
, “
Homogeneous Ignition During Fuel-Rich H2/O2/N2 Combustion in Platinum-Coated Channels at Elevated Pressures
,”
Combust. Flame
,
180
, pp.
184
195
.
24.
Chen
,
J.
, and
Xu
,
D.
,
2016
, “
Transient Simulation of the Hydrogen-Assisted Self-Ignition of Fuel-Lean Propane-Air Mixtures in Platinum-Coated Micro-Channels Using Reduced-Order Kinetics
,”
J. Chem. Technol. Metall.
,
51
(1), pp.
90
98
.https://dl.uctm.edu/journal/node/j2016-1/9_J_Chen.pdf
25.
Barbato
,
P. S.
,
Landi
,
G.
,
Pirone
,
R.
,
Russo
,
G.
, and
Scarpa
,
A.
,
2009
, “
Auto-Thermal Combustion of CH4 and CH4–H2 Mixtures Over Bi-Functional Pt-LaMnO3 Catalytic Honeycomb
,”
Catal. Today
,
147
, pp.
S271
S278
.
26.
Zimont
,
V. L.
,
2015
, “
Theoretical Study of Self-Ignition and Quenching Limits in a Catalytic Micro-Structured Burner and Their Sensitivity Analysis
,”
Chem. Eng. Sci.
,
134
, pp.
800
812
.
27.
Semenov
,
N. N.
,
1928
, “
Zur Theorie Des Verbrennungsprozesses
,”
Z. Angew. Phys
,
48
(
7–8
), pp.
571
582
.
28.
Zel'dovich
,
Y. B.
,
Barenblatt
,
G. I.
,
Librovich
,
V. B.
, and
Machviladze
,
G. M.
,
1985
,
The Mathematical Theory of Combustion and Explosions
,
Plenum Publishing Corporation
,
New York
.
29.
Cimino
,
S.
, and
Di-Benedetto
,
A.
,
2001
, “
Transient Behaviour of Perovskite-Based Monolithic Reactors in the Catalytic Combustion of Methane
,”
Catal. Today
,
69
(
1–4
), pp.
95
103
.
30.
Tang
,
A.
,
Deng
,
J.
,
Xu
,
Y.
,
Pan
,
J.
, and
Cai
,
T.
,
2018
, “
Experimental and Numerical Study of Premixed Propane/Air Combustion in the Micro-Planar Combustor With a Cross-Plate Insert
,”
Appl. Therm. Eng.
,
136
, pp.
177
184
.
31.
Deutschmann
,
O.
,
Schmidt
,
R.
,
Behrendt
,
F.
, and
Wamat
,
J.
,
1996
, “
Numerical Modeling of Catalytic Ignition
,”
Sym. (Int.) Combust.
,
26
(
1
), pp.
1747
1754
.
32.
Boehman
,
A.
,
1998
, “
Radiation Heat Transfer in Catalytic Monoliths
,”
AIChE J.
,
44
(
12
), pp.
2745
2755
.
33.
Dogwiler
,
U.
,
Mantzaras
,
J.
, and
Benz
,
P.
,
1999
, “
Two-Dimensional Modelling for Catalytically Stabilized Combustion of a Lean Methane-Air Mixture With Elementary Homogeneous and Heterogeneous Chemical Reactions
,”
Combust. Flame
,
116
(
1–2
), pp.
243
258
.
34.
Reinke
,
M.
,
Mantzaras
,
J.
, and
Bombach
,
R.
,
2005
, “
Gas Phase Chemistry in Catalytic Combustion of Methane/air Mixtures Over Platinum at Pressures of 1 to 16 Bar
,”
Combust. Flame
,
141
(
4
), pp.
448
468
.
35.
ANSYS,
2016
, “Chemkin-Pro Theory Manual 17.2,”
ANSYS
,
San Diego, CA
.
You do not currently have access to this content.