Excessive use of diesel engines and continuous increase in environmental pollution has drawn the attention of researchers in the area of the compression ignition engine. In this research article, an innovative investigation of the nonroad modified diesel engine is reported with the effective use of the hybrid Entropy-VIKOR approach. Hence, it becomes necessary to prioritize and optimize the performance defining criteria, which provides higher BTE along with lower emission simultaneously. The engine load, injection timing (Inj Tim), injection pressure (Inj Pre), and compression ratio (Com R) were selected as engine operating parameters for experimentation at the constant speed of 1500 rpm engine. The effect on engine performance parameters (BTE and BSEC) and emission (carbon monoxide (CO), total oxide of carbon (TOC), oxides of nitrogen (NOx), hydrocarbon (HC), and smoke) was studied experimentally. The optimum results were observed at load 10.32 kg, Inj Tim 20 deg btdc, Inj Pre 210 bar, and Com R 21:1 at which highest BTE of 22.24% and lowest BSEC of 16,188.5 kJ/kWh were obtained. Hybrid entropy-VIKOR approach was applied to establish the optimum ranking of the nonroad modified diesel engine. The experimental results and numerical simulation show that optimizing the engine operating parameters using the entropy-VIKOR multicriteria decision-making (MCDM) technique is applicable.

References

References
1.
Government of India
,
2018
, “
Consumption of Petroleum Products—Year-Wise
,” Ministry of Statistics and Programme Implementation, New Delhi, India, accessed Aug. 5, 2018, https://data.gov.in/catalog/consumption-petroleum-products-year-wise
2.
Dudley
,
B.
,
2018
, “
BP Statistical Review of World Energy
,” BP Statistical Review, London, UK, accessed Aug. 6, 2018, https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf
3.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
, Vol.
21
,
McGraw-Hill Series in Mechanical Engineering
,
McGraw Hill Education, New York
.
4.
Smith
,
M. N.
,
2016
, “
World Economic Forum
,” Insider Inc., New York, accessed Sept. 4, 2018, https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040
5.
Exxonmobil
,
2018
, “Outlook for Energy: A View to 2040,” Exxon Mobil Corporation, Irving, TX, accessed Sept. 4, 2018, https://cdn.exxonmobil.com/∼/media/global/files/outlook-for-energy/2018/2018-outlook-for-energy.pdf
6.
Agarwal
,
S. G.
, and
Pratap Singh
,
A.
,
2017
, “
In-Cylinder Flow Evolution Using Tomographic Particle Imaging Velocimetry in an Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012207
.
7.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102201
.
8.
Gopal Gupta
,
J.
,
Kumar Agarwal
,
A.
, and
Aggarwal
,
S. K.
,
2015
, “
Particulate Emission From Karanja Biodiesel Fueled Turbocharged CRDI Sports Utility Vehicle Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
064503
.
9.
Mistri
,
G. K.
,
Aggarwal
,
S. K.
,
Longman
,
D.
, and
Agarwal
,
A. K.
,
2015
, “
Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011202
.
10.
Patel
,
C.
,
Hwang
,
J.
,
Chandra
,
K.
,
Agarwal
,
R. A.
,
Bae
,
C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2018
, “
In-Cylinder Spray and Combustion Investigations in a Heavy-Duty Optical Engine Fueled With Waste Cooking Oil, Jatropha, and Karanja Biodiesels
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012201
.
11.
Curran
,
S. J.
,
Szybist
,
J. P.
, and
Wagner
,
R. M.
,
2018
, “
Reactivity Controlled Compression Ignition Performance With Renewable Fuels
,”
ASME
Paper No. ICEF2012-92192.
12.
Pratap Singh
,
A.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
.
13.
Srivastava
,
A. K.
,
Soni
,
S. L.
,
Sharma
,
D.
,
Sonar
,
D.
, and
Jain
,
N. L.
,
2017
, “
Effect of Compression Ratio on Performance, Emission and Combustion Characteristics of Diesel–Acetylene-Fuelled Single-Cylinder Stationary CI Engine
,”
Clean Technol. Environ. Policy
,
19
(
5
), pp.
1361
1372
.
14.
Srivastava
,
A. K.
,
Soni
,
S. L.
,
Sharma
,
D.
,
Sonar
,
D.
, and
Jain
,
N. L.
,
2017
, “
Effect of Injection Pressure on Performance, Emission and Combustion Characteristics of Diesel–Acetylene-Fuelled Single-Cylinder Stationary CI Engine
,”
Environ. Sci. Pollut. Res.
,
25
(
8
), pp.
7767
7775
.
15.
Nayyar
,
A.
,
Sharma
,
D.
,
Lal Soni
,
S.
, and
Mathur
,
A.
,
2017
, “
Experimental Study of Performance and Exhaust Emission of a VCR Diesel Engine Fuelled With Oxygenated Additives
,”
ASME
Paper No. POWER-ICOPE2017-3236.
16.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
.
17.
Agarwal
,
A. K.
,
Gupta
,
T.
, and
Kothari
,
A.
,
2011
, “
Particulate Emission From Biodiesel vs Diesel Fuelled Compression Ignition Engine
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3278
3300
.
18.
Kumar Maurya
,
R.
, and
Kumar Agarwal
,
A.
,
2014
, “
Combustion and Emission Characterization of n -Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
.
19.
Saravanan
,
S.
,
Nagarajan
,
G.
, and
Sampath
,
S.
,
2013
, “
Combined Effect of Injection Timing, EGR and Injection Pressure in NOX Control of a Stationary Diesel Engine Fuelled With Crude Rice Bran Oil Methyl Ester
,”
Fuel
,
104
(
x
), pp.
409
416
.
20.
Labecki
,
L.
,
Lindner
,
A.
,
Winklmayr
,
W.
,
Uitz
,
R.
,
Cracknell
,
R.
, and
Ganippa
,
L.
,
2013
, “
Effects of Injection Parameters and EGR on Exhaust Soot Particle Number-Size Distribution for Diesel and RME Fuels in HSDI Engines
,”
Fuel
,
112
, pp.
224
235
.
21.
Wei
,
M.
,
Li
,
S.
,
Liu
,
J.
,
Guo
,
G.
,
Sun
,
Z.
, and
Xiao
,
H.
,
2017
, “
Effects of Injection Timing on Combustion and Emission in a Diesel Engine Fueled With 2,5-Dimethylfuran-Diesel Blends
,”
Fuel
,
192
, pp.
208
217
.
22.
Xu
,
M.
,
Cheng
,
W.
,
Zhang
,
H.
,
An
,
T.
, and
Zhang
,
S.
,
2016
, “
Effect of Diesel Pre-Injection Timing on Combustion and Emission Characteristics of Compression Ignited Natural Gas Engine
,”
Energy Convers. Manage.
,
117
, pp.
86
94
.
23.
Puhan
,
S.
,
Jegan
,
R.
,
Balasubbramanian
,
K.
, and
Nagarajan
,
G.
,
2009
, “
Effect of Injection Pressure on Performance, Emission and Combustion Characteristics of High Linolenic Linseed Oil Methyl Ester in a DI Diesel Engine
,”
Renewable Energy
,
34
(
5
), pp.
1227
1233
.
24.
Pandian
,
M.
,
Sivapirakasam
,
S. P.
, and
Udayakumar
,
M.
,
2011
, “
Investigation on the Effect of Injection System Parameters on Performance and Emission Characteristics of a Twin Cylinder Compression Ignition Direct Injection Engine Fuelled With Pongamia Biodiesel-Diesel Blend Using Response Surface Methodology
,”
Appl. Energy
,
88
(
8
), pp.
2663
2676
.
25.
Choi
,
C. Y.
, and
Reitz
,
R. D.
,
1999
, “
Experimental Study on the Effects of Oxygenated Fuel Blends and Multiple Injection Strategies on DI Diesel Engine Emission
,”
Fuel
,
78
(
11
), pp.
1303
1317
.
26.
Park
,
S. H.
,
Yoon
,
S. H.
, and
Lee
,
C. S.
,
2013
, “
HC and CO Emission Reduction by Early Injection Strategy in a Bioethanol Blended Diesel-Fueled Engine With a Narrow Angle Injection System
,”
Appl. Energy
,
107
(
x
), pp.
81
88
.
27.
Beatrice
,
C.
,
Napolitano
,
P.
, and
Guido
,
C.
,
2014
, “
Injection Parameter Optimization by DoE of a Light-Duty Diesel Engine Fed by Bio-Ethanol/RME/Diesel Blend
,”
Appl. Energy
,
113
, pp.
373
384
.
28.
Srivastava
,
D. K.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Characteristics of a Variable Compression Ratio Laser-Plasma Ignited Compressed Natural Gas Engine
,”
Fuel
,
214
, pp.
322
329
.
29.
Hwang
,
J.
,
Bae
,
C.
,
Patel
,
C.
,
Agarwal
,
R. A.
,
Gupta
,
T.
, and
Kumar Agarwal
,
A.
,
2017
, “
Investigations on Air-Fuel Mixing and Flame Characteristics of Biodiesel Fuels for Diesel Engine Application
,”
Appl. Energy
,
206
, pp.
1203
1213
.
30.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
.
31.
Agarwal
,
A. K.
,
Chandra Shukla
,
P.
,
Patel
,
C.
,
Gupta
,
J. G.
,
Sharma
,
N.
,
Prasad
,
R. K.
, and
Agarwal
,
R. A.
,
2016
, “
Unregulated Emission and Health Risk Potential From Biodiesel (KB5, KB20) and Methanol Blend (M5) Fuelled Transportation Diesel Engines
,”
Renewable Energy
,
98
, pp.
283
291
.
32.
Urdhwaresh
,
R.
,
2017
, “
Indian Emissions Regulations. Limits, Regulations, Measurement of Exhaust Emissions and Calculation of Fuel Consumption
,” Automotive Research Association of India, Pune, India.
33.
Opricovic
,
S.
, and
Hshiung Tzeng
,
G.
,
2004
, “
Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS
,”
Eur. J. Oper. Res.
,
156
(
2
), pp.
445
455
.
34.
Chang
,
C.-L.
,
2010
, “
A Modified VIKOR Method for Multiple Criteria Analysis
,”
Environ. Monit. Assess.
,
168
(
1–4
), pp.
339
344
.
35.
Jahan
,
A.
,
Edwards
,
K. L.
, and
Bahraminasab
,
M.
,
2016
,
Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design
,
2nd ed.
, Elsevier, New York.
36.
Josselin
,
J.-M.
, and
Le Maux
,
B.
,
2017
,
Multi-Criteria Decision Analysis: Statistical Tools for Program Evaluation
, Elsevier, New York.
37.
Chatterjee
,
P.
,
Manikrao Athawale
,
V.
, and
Chakraborty
,
S.
,
2010
, “
Selection of Industrial Robots Using Compromise Ranking and Outranking Methods
,”
Rob. Comput.-Integr. Manuf.
,
26
(
5
), pp.
483
489
.
38.
Rao
,
R. V.
,
2008
, “
A Decision Making Methodology for Material Selection Using an Improved Compromise Ranking Method
,”
Mater. Des.
,
29
(
10
), pp.
1949
1954
.
39.
Debbarma
,
B.
,
Chakraborti
,
P.
,
Bose
,
P. K.
,
Deb
,
M.
, and
Banerjee
,
R.
,
2017
, “
Exploration of PROMETHEE II and VIKOR Methodology in a MCDM Approach for Ascertaining the Optimal Performance-Emission Trade-Off Vantage in a Hydrogen-Biohol Dual Fuel Endeavour
,”
Fuel
,
210
, pp.
922
935
.
40.
Hoseinpour
,
M.
,
Sadrnia
,
H.
,
Tabasizadeh
,
M.
, and
Ghobadian
,
B.
,
2018
, “
Evaluation of the e Ff Ect of Gasoline Fumigation on Performance and Emission Characteristics of a Diesel Engine Fueled With B20 Using an Experimental Investigation and TOPSIS Method
,”
Fuel
,
223
, pp.
277
285
.
41.
Gul
,
M.
,
Celik
,
E.
,
Aydin
,
N.
,
Taskin Gumus
,
A.
, and
Fuat Guneri
,
A.
,
2016
, “
A State of the Art Literature Review of VIKOR and Its Fuzzy Extensions on Applications
,”
Appl. Soft Comput. J.
,
46
, pp.
60
89
.
42.
Tavana
,
M.
,
Kiani Mavi
,
R.
,
Santos-Arteaga
,
F. J.
, and
Rasti Doust
,
E.
,
2016
, “
An Extended VIKOR Method Using Stochastic Data and Subjective Judgments
,”
Comput. Ind. Eng.
,
97
, pp.
240
247
.
43.
Xu
,
F.
,
Liu
,
J.
,
Lin
,
S.
, and
Yuan
,
J.
,
2017
, “
A VIKOR-Based Approach for Assessing the Service Performance of Electric Vehicle Sharing Programs: A Case Study in Beijing
,”
J. Cleaner Prod.
,
148
, pp.
254
267
.
44.
Merkisz
,
J.
, and
Pielecha
,
J.
,
2018
, “
Analysis of Particle Concentrations and Smoke in Common-Rail Diesel Engine
,”
SAE
Paper No. 2008-01-1743.
45.
Sung
,
Y.
,
Jung
,
G.
,
Park
,
J.
,
Choi
,
B.
, and
Lim
,
M. T.
,
2014
, “
Relation Between Particulate Emissions and Exhaust Smoke Level in Premixed Charge Compression Ignition Engine
,”
J. Mech. Sci. Technol.
,
28
(
2
), pp.
783
787
.
46.
Pilusa
,
T. J.
,
Mollagee
,
M. M.
, and
Muzenda
,
E.
,
2012
, “
Reduction of Vehicle Exhaust Emissions From Diesel Engines Using the Whale Concept Filter
,”
Aerosol. Air Qual. Res.
,
12
(
5
), pp.
994
1006
.
You do not currently have access to this content.