Syngas has gained attention recently due to its high energy density and environmentally friendly characteristics. Flame stability plays an important role in flame propagation in energy conversion devices. Experimental studies were performed in a cylindrical chamber to investigate flame instability of syngas/air/diluent mixture. A Z-shape Schlieren system coupled with a high-speed complementary metal–oxide–semiconductor camera was used to record flame pictures up to 40,000 frames per second. In this research, syngas is a mixture of hydrogen and carbon monoxide and diluent is a blend of 14% CO2 and 86% N2 with the same specific heat as the burned gases. Three main flame instabilities namely Rayleigh–Taylor (body force) instability, hydrodynamic instability, and thermal-diffusive instability have been studied. For the onset of flame instability, a power law correlation for the ratio of critical pressure to initial pressure of syngas/air/diluent flames over a wide range of initial temperatures (298–450 K), initial pressures (1.0–2.0 atm), equivalence ratios (0.6–3.0), diluent concentrations (0–10%), and hydrogen percentages (5–25%) in the fuel has been developed.

References

References
1.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
.
2.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2008
, “
Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition
,”
Combust. Flame
,
155
(
1–2
), pp.
145
160
.
3.
Sun
,
H.
,
Yang
,
S. I.
,
Jomaas
,
G.
, and
Law
,
C. K.
,
2007
, “
High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
439
446
.
4.
Som
,
S.
,
Ramirez
,
A. I.
,
Hagerdorn
,
J.
,
Saveliev
,
A.
, and
Aggarwal
,
S. K.
,
2008
, “
A Numerical and Experimental Study of Counterflow Syngas Flames at Different Pressures
,”
Fuel
,
87
(
3
), pp.
319
334
.
5.
Natarajan
,
J.
,
Kochar
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2009
, “
Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1261
1268
.
6.
Rayleigh
,
L.
,
1964
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Scientific Papers by Lord Rayleigh
, Dover Publications, Mineola, NY.
7.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes—I
,”
Proc. R. Soc. A
,
201
(1065), pp.
192
196
.
8.
Kadowaki
,
S.
,
2005
, “
The Effects of Heat Loss on the Burning Velocity of Cellular Premixed Flames Generated by Hydrodynamic and Diffusive-Thermal Instabilities
,”
Combust. Flame
,
143
(
3
), pp.
174
182
.
9.
Darrieus
,
G.
,
1938
, “
Propagation D'un Front de Flame, Unpublished Work Presented at Paris
,” La Technique Moderne and le Congres de Mechanique Appliquee, Paris, France.
10.
Landau
,
L. D.
,
1944
, “
On the Theory of Slow Combustion
,”
Acta Physicochim. URSS
,
19
, pp.
77
88
.
11.
Kadowaki
,
S.
,
Suzuki
,
H.
, and
Kobayashi
,
H.
,
2005
, “
The Unstable Behavior of Cellular Premixed Flames Induced by Intrinsic Instability
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
169
176
.
12.
Markstein
,
G. H.
,
1951
, “
Experimental and Theoretical Studies of Flame Front Stability
,”
J. Aeronaut. Sci.
,
18
, pp.
199
220
.
13.
Markstein
,
G. H.
,
1953
, “
Instability Phenomena in Combustion Waves
,”
Symp. (Int.) Combust.
,
4
(1), pp. 44–59.
14.
Clanet
,
C.
, and
Searby
,
G.
,
1998
, “
First Experimental Study of the Darrieus-Landau Instability
,”
Phys. Rev. Lett.
,
80
(
17
), p.
3867
.
15.
Zeldovich
,
Y. B.
,
1944
,
Theory of Combustion and Detonation of Gases
,
Academy Science
,
Academy of Sciences, Moscow, USSR
(in Russian).
16.
Barenblatt
,
G. I.
,
Zeldovich
,
Y. B.
, and
Istratov
,
A. G.
,
1962
, “
On Diffusional-Thermal Stability of a Laminar Flame
,”
J. Appl. Mech. Tech.
,
4
, pp.
21
26
.
17.
Sivashinsky
,
G. I.
,
1977
, “
Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames—I: Derivation of Basic Equations
,”
Acta Astronaut.
,
4
(
11–12
), pp.
1177
1206
.
18.
Sivashinsky
,
G. I.
,
1977
, “
Diffusional-Thermal Theory of Cellular Flames
,”
Combust. Sci. Technol.
,
15
(
3–4
), pp.
137
146
.
19.
Joulin
,
G.
, and
Clavin
,
P.
,
1979
, “
Linear Stability Analysis of Nonadiabatic Flames
,”
Combust. Flame
,
35
, pp.
139
53
.
20.
Frankel
,
M. L.
, and
Sivashinsky
,
G. I.
,
1982
, “
The Effect of Viscosity on Hydrodynamic Stability of a Plane Flame Front
,”
Combust. Sci. Technol.
,
29
(
3–6
), pp.
207
224
.
21.
Matalon
,
M.
, and
Matkowsky
,
B. J.
,
1982
, “
Flames as Gas Dynamic Discontinuities
,”
J. Fluid Mech.
,
124
(
1
), pp.
239
259
.
22.
Clavin
,
P.
, and
Williams
,
F. A.
,
1982
, “
Effects of Molecular-Diffusion and of Thermal-Expansion on the Structure and Dynamics of Premixed Flames in Turbulent Flows of Large-Scale and Low Intensity
,”
J. Fluid Mech.
,
116
(
1
), pp.
251
282
.
23.
Pelce
,
P.
, and
Clavin
,
P.
,
1982
, “
Influence of Hydrodynamics and Diffusion Upon the Stability Limits of Laminar Premixed Flames
,”
J. Fluid Mech.
,
124
(
1
), pp.
219
237
.
24.
Sivashinsky
,
G. I.
,
1983
, “
Instabilities, Pattern-Formation, and Turbulence in Flame
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
179
199
.
25.
Matalon
,
M.
,
Cui
,
C.
, and
Bechtold
,
J. K.
,
2003
, “
Hydrodynamic Theory of Premixed Flames: Effects of Stoichiometry, Variable Transport Coefficients and Arbitrary Reaction Orders
,”
J. Fluid Mech.
,
487
, pp.
179
210
.
26.
Class Andreas
,
G.
,
Matkowsky
,
B. J.
, and
Klimenko
,
A. Y.
,
2003
, “
Stability of Planar Flames as Gas Dynamic Discontinuities
,”
J. Fluid Mech.
,
491
, pp.
51
63
.
27.
Yuan
,
J.
,
Ju
,
Y.
, and
Law
,
C. K.
,
2005
, “
Coupled Hydrodynamic and Diffusional-Thermal Instabilities in Flame Propagation at Sub-Unity Lewis Numbers
,”
Phys. Fluids
,
17
(
7
), p.
074106
.
28.
Yuan
,
J.
,
Ju
,
Y.
, and
Law
,
C. K.
,
2006
, “
Pulsating and Hydrodynamic Instabilities at Large Lewis Numbers
,”
Combust. Flame
,
144
(
1–2
), pp.
386
397
.
29.
Yuan
,
J.
,
Ju
,
Y.
, and
Law
,
C. K.
,
2007
, “
On Flame Front Instability at Elevated Pressures
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1267
1274
.
30.
Vu
,
T. M.
,
Park
,
J.
,
Kwon
,
O. B.
, and
Kim
,
J. S.
,
2009
, “
Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas–Air Spherical Premixed Flames
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6961
6969
.
31.
Vu
,
T. M.
,
Park
,
J.
,
Kwon
,
O. B.
,
Bae
,
D. S.
,
Yun
,
J. H.
, and
Keel
,
S. I.
,
2010
, “
Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3868
–38
80
.
32.
Burbano
,
H. J.
,
Pareja
,
J.
, and
Amell
,
A. A.
,
2011
, “
Laminar Burning Velocities and Flame Stability Analysis of H2/CO/Air Mixtures With Dilution of N2 and CO2
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3232
3242
.
33.
Burbano
,
H. J.
,
Pareja
,
J.
, and
Amell
,
A. A.
,
2011
, “
Laminar Burning Velocities and Flame Stability Analysis of Syngas Mixtures at Sub-Atmospheric Pressures
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3243
3252
.
34.
Li
,
H.
,
Li
,
G.
,
Sun
,
Z.
,
Yu
,
Y.
,
Zhai
,
Y.
, and
Zhou
,
Z.
,
2014
, “
Experimental Investigation on Laminar Burning Velocities and Flame Intrinsic Instabilities of Lean and Stoichiometric H2/CO/Air Mixtures at Reduced, Normal and Elevated Pressures
,”
Fuel
,
135
, pp.
279
291
.
35.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flames
,
168
, pp.
20
31
.
36.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
37.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
.
38.
Parsinejad
,
F.
,
Matlo
,
M.
, and
Metghalchi
,
H.
,
2004
, “
A Mathematical Model for Schlieren and Shadowgraph Images of Transient Expanding Spherical Thin Flames
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
241
247
.
39.
Parsinejad
,
F.
,
Keck
,
J. C.
, and
Metghalchi
,
H.
,
2007
, “
On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames: A Theoretic and Experimental Study
,”
Exp. Fluids
,
43
(
6
), pp.
887
894
.
40.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
41.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p. 022202.
42.
Trochim
,
W. M.
, and
Donnelly
,
J. P.
,
2006
,
The Research Methods Knowledge Base
,
3rd ed.
,
Atomic Dog
,
Cincinnati, OH
.
43.
Wang
,
Z.
,
Alswat
,
M.
,
Yu
,
G.
,
Allehaibi
,
M. O.
, and
Metghalchi
,
H.
,
2017
, “
Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel Air Mixtures at Moderate Pressures and High Temperatures
,”
Fuel
,
209
, pp.
529
537
.
44.
Wang
,
Z.
,
Bai
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Effects of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel Air Mixtures at High Temperatures and Moderate Pressures
,”
Fuel
,
231
, pp.
204
214
.
45.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
46.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1980
, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.
47.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
48.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Lamianr Burning Velocity of Methane-Air-Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
190
196
.
49.
Parsinejad
,
F.
,
Arcari
,
C.
, and
Metghalchi
,
H.
,
2006
, “
Flame Structure and Burning Speed of JP-10 Air Mixtures
,”
Combust. Sci. Technol.
,
178
(
5
), pp.
975
1000
.
50.
Rahim
,
F.
,
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Andrews
,
R. J.
, and
Metghalchi
,
H.
,
2008
, “
A Thermodynamic Model to Calculate Burning Speed of Methane-Air-Diluent Mixtures
,”
Int. J. Thermodyn.
,
11
(4), pp.
151
161
.
51.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Rahim
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model
,”
Entropy
,
12
(
12
), pp.
2485
2496
.
52.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2010
, “
On Flame Kernel Formation and Propagation in Premixed Gases
,”
Combust. Flame
,
157
(
12
), pp.
2211
2221
.
53.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(
5
), pp.
1041
1049
.
54.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
(
4
), pp.
1476
1486
.
55.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylence (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
56.
Salicone
,
S.
,
2006
,
Measurement Uncertainty: An Approach Via the Mathematical Theory of Evidence
,
Springer Science and Business Media
,
New York
.
You do not currently have access to this content.