Rate-controlled constrained equilibrium (RCCE) is a reduction technique used to describe the time evolution of complex chemical reacting systems. This method is based on the assumption that a nonequilibrium system can reach its final equilibrium state by a series of RCCE states determined by maximizing entropy or minimizing relevant free energy. Those constraints are imposed by some small number of slow reactions. Much research has been done on this method and many RCCE models of C1C4 hydrocarbon fuel combustion have been established by the previous researchers. Those models show good performance compared with the result of detailed kinetic model (DKM). In this study, RCCE method is further developed to model normal pentane (n-C5H12) combustion with least number of constraints. The chemical mechanism for DKM contains 133 species and 922 reactions. Two sets of constraints were found during the study: (1) 16 constraints for the normal pentane and pure oxygen mixture and (2) 14 constraints for the mixture of normal pentane and oxygen with argon as diluent. Results of the first constraint set were compared with result of DKM and results of the second constraint set were compared with those of DKM and experimental data by calculating their ignition delay times. Comparisons showed that the first set of constraints had relatively good accuracy and the second set of constraints agreed very well with the experimental data.

References

References
1.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A.
, and
Law
,
C.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.
2.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
.
3.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
.
4.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures
,”
Appl. Energy
,
189
, pp.
568
577
.
5.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
6.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
7.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
.
8.
Wang
,
Z.
,
Alswat
,
M.
,
Yu
,
G.
,
Allehaibi
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel Air Mixtures at Moderate Pressures and High Temperatures
,”
Fuel
,
209
, pp.
529
537
.
9.
Wang
,
Z.
,
Bai
,
Z.
,
Yelishala
,
S.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Effects of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel Air Mixtures at High Temperatures and Moderate Pressures
,”
Fuel
,
231
, pp.
204
214
.
10.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
.
11.
Benson
,
S.
,
1952
, “
The Induction Period in Chain Reactions
,”
J. Chem. Phys.
,
20
(
10
), pp.
1605
1612
.
12.
Rein
,
M.
,
1992
, “
The Partial-Equilibrium Approximation in Reacting Flows
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
5
), pp.
873
886
.
13.
Pope
,
S. B.
, and
Maas
,
U.
,
1993
, “
Simplifying Chemical Kinetics: Trajectory-Generated Low-Dimensional Manifolds
,” Mechanical and Aerospace Engineering Report, Ithaca, NY, Report No. FDA 93-11.
14.
Maas
,
U.
, and
Pope
,
S.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
(
3–4
), pp.
239
264
.
15.
Lam
,
S.
, and
Goussis
,
D.
,
1994
, “
The CSP Method for Simplifying Kinetics
,”
Int. J. Chem. Kinet.
,
26
(
4
), pp.
461
486
.
16.
Schwer
,
D.
,
Lu
,
P.
, and
Green
,
W.
,
2003
, “
An Adaptive Chemistry Approach to Modeling Complex Kinetics in Reacting Flows
,”
Combust. Flame
,
133
(
4
), pp.
451
465
.
17.
Lu
,
T.
, and
Law
,
C.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
18.
Ren
,
Z.
,
Pope
,
S.
,
Vladimirsky
,
A.
, and
Guckenheimer
,
J.
,
2007
, “
Application of the ICE-PIC Method for the Dimension Reduction of Chemical Kinetics Coupled With Transport
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
473
481
.
19.
Keck
,
J.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.
20.
Keck
,
J.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.
21.
Bishnu
,
P. S.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Model.
,
1
(
3
), pp.
295
312
.
22.
Bishnu
,
P.
,
Hamiroune
,
D.
, and
Metghalchi
,
M.
,
2001
, “
Development of Constrained Equilibrium Codes and Their Applications in Nonequilibrium Thermodynamics
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
214
220
.
23.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1998
, “
Rate-Controlled Constrained Equilibrium Method Using Constraint Potentials
,”
Combust. Theory Model.
,
2
(
1
), pp.
81
94
.
24.
Janbozorgi
,
M.
,
Gao
,
Y.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2006
, “
Rate-Controlled Constrained-Equilibrium Calculations of Ethanol-Oxygen Mixture
,”
ASME
Paper No. IMCEC2006-15667.
25.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to the Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.
26.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.
27.
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
J. Propul. Power
,
28
(
4
), pp.
677
684
.
28.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
29.
Beretta
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp.
342
364
.
30.
Hadi
,
F.
, and
Sheikhi
,
M.
,
2016
, “
A Comparison of Constraint and Constraint Potential Forms of the Rate-Controlled Constraint-Equilibrium Method
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022202
.
31.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Times at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062203
.
32.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2016
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022205
.
33.
Law
,
R.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1989
, “
Rate-Controlled Constrained-Equilibrium Calculation of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1705
1713
.
34.
Safari
,
M.
,
Hadi
,
F.
, and
Sheikhi
,
M.
,
2014
, “
Progress in the Prediction of Entropy Generation in Turbulent Reacting Flows Using Large Eddy Simulation
,”
Entropy
,
16
(
10
), pp.
5159
5177
.
35.
Sheikhi
,
M.
,
Safari
,
M.
, and
Hadi
,
F.
,
2015
, “
Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
53
(
9
), pp.
2571
2587
.
36.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2018
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
.
37.
Yu
,
G.
,
Zhang
,
Y.
,
Wang
,
Z.
,
Bai
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of n-Butane/Oxygen/Diluent Mixtures
,”
Fuel
,
239
, pp.
786
793
.
38.
Yousefian
,
V.
,
1998
, “
A Rate-Controlled Constrained-Equilibrium Thermochemistry Algorithm for Complex Reacting Systems
,”
Combust. Flame
,
115
(
1–2
), pp.
66
80
.
39.
Rigopoulos
,
S.
, and
Løvås
,
T.
,
2009
, “
A LOI–RCCE Methodology for Reducing Chemical Kinetics, With Application to Laminar Premixed Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
569
576
.
40.
Jones
,
W.
, and
Rigopoulos
,
S.
,
2007
, “
Reduced Chemistry for Hydrogen and Methanol Premixed Flames Via RCCE
,”
Combust. Theory Model.
,
11
(
5
), pp.
755
780
.
41.
Petzold
,
L.
,
1982
, “
Differential/Algebraic Equations Are Not ODE's
,”
SIAM J. Sci. Stat. Comput.
,
3
(
3
), pp.
367
384
.
42.
Hadi
,
F.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Fundamentals of Rate-Controlled Constrained-Equilibrium Method
,”
Energy for Propulsion
,
Springer
,
Singapore
, pp.
237
266
.
43.
Wang
,
H.
,
Dames
,
E.
,
Sirjean
,
B.
,
Sheen
,
D.
,
Tango
,
R.
,
Violi
,
A.
,
Lai
,
J. Y. W.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
,
Law
,
C. K.
,
Tsang
,
W.
,
Cernansky
,
N. P.
,
Miller
,
D. L.
, and
Lindstedt
,
R. P.
,
2010
, “
A High-Temperature Chemical Kinetic Model of n-Alkane (Up to n-Dodecane), Cyclohexane, and Methyl-, Ethyl-, n-Propyl and n-Butyl-Cyclohexane Oxidation at High Temperatures, JetSurF version 2.0
,” accessed Sept. 19, 2010, http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html
44.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.3.0
,” accessed Jan. 24, 2019, https://zenodo.org/record/170284#.XEmf5lUzbZ4
45.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A.
,
Davis
,
S.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C.
,
2007
, “
USC Mech Version II: High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” accessed Jan. 24, 2019, http://ignis.usc.edu/USC_Mech_II.htm
46.
Jiang
,
X.
,
Deng
,
F.
,
Yang
,
F.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2017
, “
High Temperature Ignition Delay Time of DME/n-Pentane Mixture Under Fuel Lean Condition
,”
Fuel
,
191
, pp.
77
86
.
47.
Cheng
,
Y.
,
Hu
,
E.
,
Deng
,
F.
,
Yang
,
F.
,
Zhang
,
Y.
,
Tang
,
C.
, and
Huang
,
Z.
,
2016
, “
Experimental and Kinetic Comparative Study on Ignition Characteristics of 1-Pentene and n-Pentane
,”
Fuel
,
172
, pp.
263
272
.
You do not currently have access to this content.