This experimental research examined the effect of CO2 as a diluent on the laminar burning speed of propane–air mixtures. Combustion took place at various CO2 concentrations (0–80%), different equivalence ratios (0.7<ϕ<1.2) and over a range of temperatures (298–420 K) and pressures (0.5–6.2 atm). The experiments were performed in a cylindrical constant volume chamber with a Z-shaped Schlieren system, coupled with a high-speed CMOS camera to capture the propagation of the flames at speeds up to 4000 frames per second. The flame stability of these mixtures at different pressures, equivalence ratios, and CO2 concentrations was also studied. Only laminar, spherical, and smooth flames were considered in measuring laminar burning speed. Pressure rise data as a function of time during the flame propagation were the primary input of the multishell thermodynamic model for measuring the laminar burning speed of propane-CO2-air mixtures. The laminar burning speed of such blends was observed to decrease with the addition of CO2 and to increase with the gas temperature. It was also noted that the laminar burning speed decreases with increasing pressure. The collected experimental data were compared with simulation data obtained via a steady one-dimensional (1D) laminar premixed flame code from Cantera, using a detailed H2/CO/C1–C4 kinetics model encompassing 111 species and 784 reactions.

References

References
1.
U.S. Department of Energy, Alternative Fuels Data Center, 2018, “Propane Vehicle Emissions,” U.S. Department of Energy, Washington, DC, accessed Jan. 5, 2018, https://afdc.energy.gov/vehicles/propane_emissions.html
2.
Pourkhesalian
,
A. M.
,
Shamekhi
,
A. H.
, and
Salimi
,
F.
,
2010
, “
Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics
,”
Fuel
,
89
(
5
), pp.
1056
1063
.
3.
Hendren
,
F.
,
1983
, “
Propane Power for Light Duty Vehicles: An Overview
,”
SAE Trans.
,
92
, pp.
72
86
.http://www.jstor.org/stable/44668056
4.
Ashok
,
B.
,
Ashok
,
D. S.
, and
Kumar
,
R. C.
,
2015
, “
LPG Diesel Dual Fuel Engine—A Critical Review
,”
Alexandra Eng. J.
,
54
(
2
), pp.
105
126
.
5.
Mardi
,
M.
,
Khalilarya
,
S.
, and
Nemari
,
A.
,
2014
, “
A Numerical Investigation on the Influence of EGR in a Supercharged SI Engine Fueled With Gasoline and Alternative Fuels
,”
Energy Convers. Manage.
,
83
, pp.
260
269
.
6.
UNEP Ozone Secretariat
,
2016
, “
United Nations Environment Programme
,” Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances That Deplete the Ozone Layer, Kigali, Rwanda, Oct. 8–14, Document No. UNEP/OzL. Pro.28/CRP/10.
7.
European Parliament
, 2014, “
Regulation (EU) No. 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No. 842/2006
,”
Off. J. Eur. Union
,
L150
, pp.
195
230
.http://data.europa.eu/eli/reg/2014/517/oj
8.
ANSI/ASHRAE
,
2013
, “
Safety Standard for Refrigeration Systems
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, Standard No. 15-2013.
9.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
, and
Levendis
,
Y. A.
,
2018
, “
Laminar Burning Speed of Propane/CO2/air Mixtures at Elevated Pressures and Temperatures
,”
ASTFE Third Thermal and Fluids Engineering Conference (TFEC)
, Fort Lauderdale, FL, Mar. 4–7, pp.
317
320
.https://www.researchgate.net/publication/325164663_LAMINAR_BURNING_SPEED_OF_PROPANECO2AIR_MIXTURES_AT_ELEVATED_PRESSURES_AND_TEMPERATURES
10.
Metghalchi
,
H.
, and
Keck
,
J. C.
,
1980
, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.
11.
Ebaid
,
S. Y.
, and
Al-Khishali
,
J. M.
,
2016
, “
Measurements of Laminar Burning Velocity of Propane:Air Mixtures
,”
Adv. Mech. Eng.
,
8
(
6
), pp.
1
17
.
12.
Akram
,
M.
,
Kishore
,
V. R.
, and
Kumar
,
S.
,
2012
, “
Laminar Burning Velocity of Propane/CO2/N2-Air Mixtures at Elevated Temperatures
,”
Energy Fuel
,
26
(
9
), pp.
5509
5518
.
13.
Yelishala
,
S. C.
,
Ma
,
X.
,
Wang
,
Z.
,
Levendis
,
Y. A.
, and
Metghalchi
,
H.
,
2018
, “
Assessment of Blends of Hydrocarbons and CO2 as Alternative Natural Refrigerants
,”
ASTFE Third Thermal and Fluids Engineering Conference (TFEC)
, Fort Lauderdale, FL, Mar. 4–7, pp.
759
762
.https://www.researchgate.net/publication/325160951_ASSESSMENT_OF_BLENDS_OF_HYDROCARBONS_AND_CO2_AS_ALTERNATIVE_NATURAL_REFRIGERANTS
14.
Onaka
,
Y.
,
Miyara
,
A.
,
Tsubaki
,
K.
, and
Koyama
,
S.
,
2009
, “
Analysis of Heat Pump Cycle Using CO2/DME Mixture Refrigerant
,”
Trans. Jpn. Soc. Refrig. Air Cond. Eng.
,
26
(
3
), pp.
245
252
.
15.
Kim
,
J. H.
,
Cho
,
J. M.
, and
Kim
,
M. S.
,
2008
, “
Cooling Performance of Several CO2/Propane Mixtures and Glide Matching With Secondary Heat Transfer Fluid
,”
Int. J. Refrig.
,
31
(
5
), pp.
800
806
.
16.
Parsinejad
,
F.
,
Matlo
,
M.
, and
Metghalchi
,
H.
,
2004
, “
A Mathematical Model for Schlieren and Shadowgraph Images of Transient Expanding Spherical Thin Flames
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
241
7
.
17.
Parsinejad
,
F.
,
Keck
,
J. C.
, and
Metghalchi
,
H.
,
2007
, “
On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames: A Theoretic and Experimental Study
,”
Exp. Fluids
,
43
(
6
), pp.
887
894
.
18.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
19.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), pp.
1
7
.
20.
Bradley
,
D.
,
Gaskell
,
P. H.
, and
Gu
,
X. J.
,
1996
, “
Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study
,”
Combust. Flame
,
104
(1–2), pp.
176
198
.
21.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(
5
), pp.
1041
1049
.
22.
Burke
,
M. P.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Ju
,
Y.
,
2010
, “
Negative Pressure Dependence of Mass Burning Rates of H2/CO/O2/Diluent Flames at Low Flame Temperatures
,”
Combust. Flame
,
157
(
4
), pp.
618
631
.
23.
Burke
,
M. P.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2009
, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
,
156
(
4
), pp.
771
779
.
24.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Apply Energy
,
179
, pp.
451
462
.
25.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
.
26.
Wang
,
Z.
,
Bai
,
Z.
,
Yelishala
,
S. C.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Effect of Diluent on Laminar Burning Speed and Flame Structure of Gas to Liquid Fuel-Air Mixtures at High Temperature and Moderate Pressures
,”
Fuel
,
231
, pp.
204
214
.
27.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flame
,
168
, pp.
20
31
.
28.
Wang
,
Z.
,
Yelishala
,
S. C.
,
Bai
,
Z.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “
Effects of Diluent on Flame Structure and Laminar Burning Speed of GTL/Air Flames at Moderate Pressures and High Temperatures
,” International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (
ECOS
), Guimarães, Portugal, June 17–22.https://www.researchgate.net/publication/326303971_Effects_of_diluent_on_flame_structure_and_laminar_burning_speed_of_GTLair_flames_at_moderate_pressures_and_high_temperatures
29.
Wang
,
Z.
,
Alswat
,
M.
,
Yu
,
G.
,
Allehaibi
,
M. O.
, and
Metghalchi
,
H.
,
2017
, “
Flame Structure and Laminar Burning Speed of Gas to Liquid Fuel-Air Mixtures at Moderate Pressures and High Temperatures
,”
Fuel
,
209
, pp.
529
537
.
30.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
.
31.
Kadowaki
,
S.
,
Suzuki
,
H.
,
Kobayashi
,
H.
, and
Im
,
H. G.
,
2005
, “
The Unstable Behavior of Cellular Premixed Flames Induced by Intrinsic Instability
,”
Proc Combust Inst.
,
30
(
1
), pp.
169
176
.
32.
Law
,
C. K.
, and
Kwon
,
O. C.
,
2004
, “
Effects of Hydrocarbon Substitution on Atmospheric Hydrogen-Air Flame Propagation
,”
Int. J. Hydrogen Energy
,
29
(
8
), pp.
867
879
.
33.
Sivashinsky
,
G. I.
,
1977
, “
Diffusional-Thermal Theory of Cellular Flames
,”
Combust. Sci. Technol.
,
15
(
3–4
), pp.
137
146
.
34.
Bechtold
,
J. K.
, and
Matalon
,
M.
,
1987
, “
Hydrodynamic and Diffusion Effects on the Stability of Spherically Expanding Flames
,”
Combust. Flame
,
67
(
1
), pp.
77
90
.
35.
Sivashinsky
,
G. I.
,
1983
, “
Instabilities, Pattern Formation, and Turbulence in Flames
,”
Annu. Rev Fluid Mech.
,
15
(
1
), pp.
179
99
.
36.
Wu
,
F.
,
Liang
,
W.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Law
,
C. K.
, 2015, “
Uncertainty in Stretch Extrapolation of Laminar Flame Speed From Expanding Spherical Flames
,”
Proc. Combust. Inst.
,
35
, pp. 663–670.
37.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
38.
Elia
,
M.
,
Alinsky
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane-Air-Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
190
196
.
39.
Parsinejad
,
F.
,
Arcari
,
C.
, and
Metghalchi
,
H.
,
2006
, “
Flame Structure and Burning Speed of JP-10 Air Mixtures
,”
Combust Sci. Technol.
,
178
(
5
), pp.
975
1000
.
40.
Rahim
,
F.
,
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Andrews
,
R. J.
, and
Metghalchi
,
H.
,
2008
, “
A Thermodynamic Model to Calculate Burning Speed of Methane-Air-Diluent Mixtures
,”
Int. J. Thermodyn.
,
11
(4), pp.
151
161
.http://dergipark.ulakbim.gov.tr/eoguijt/article/view/1034000223
41.
Rahim
,
F.
,
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2002
, “
Burning Velocity Measurements of Methane-Oxygen-Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements
,”
Int. J. Engine Res.
,
3
(
2
), pp.
81
92
.
42.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Rahim
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model
,”
Entropy
,
12
(
12
), pp.
2485
2496
.
43.
Moghaddas
,
A.
,
Bennett
,
C.
,
Rokni
,
E.
, and
Metghalchi
,
H.
,
2014
, “
Laminar Burning Speeds and Flame Structures of Mixtures of Difluoromethane (HFC-32) and 1,1-Difluoroethane (HCF-152a) With Air at Elevated Temperatures and Pressures
,”
HVACR Res.
,
20
, pp.
42
50
.
44.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2010
, “
On Flame Kernel Formation and Propagation in Premixed Gases
,”
Combust. Flame
,
157
(
12
), pp.
2211
2221
.
45.
Askari
,
O.
,
Beretta
,
G. P.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2016
, “
On the Thermodynamic Properties of Thermal Plasma in Flame Kernel of Hydrocarbon/Air Premixed Gases
,”
Eur. Phys. J. D
,
70
, p.
159
.
46.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid (GTL) Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(2), p.
022202
.
47.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
, 2018, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME. J. Energy Resour. Technol.
,
141
(2), p. 022206.
48.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speed and Determination of Onset of Autoignition of Jet-A/Air and JP-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(2), p. 022205.
49.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
(
4
), pp.
1476
1486
.
50.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
51.
Chen
,
Z.
,
Qin
,
X.
,
Xu
,
B.
,
Ju
,
Y.
, and
Liu
,
F.
,
2007
, “
Studies of Radiation Absorption on Flame Speed and Flammability Limit of CO2 Diluted Methane Flames at Elevated Pressures
,”
Proc. Combust Inst.
,
31
(
2
), pp.
2693
2700
.
52.
Riviere
,
P.
, and
Soufiani
,
A.
,
2012
, “
Updated Band Model Parameters for H2O, CO2, CH4 and CO Radiation at High Temperature
,”
Int. J. Heat Mass Transfer
,
55
, pp.
3349
3358
.
53.
Salicone
,
S.
,
2006
,
Measurement Uncertainty: An Approach Via the Mathematical Theory of Evidence
,
Springer Science and Business Media
,
New York
.
54.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi
,
H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
Proc. Combust Inst.
,
33
(
1
), pp.
1021
1027
.
55.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.
56.
Askari
,
O.
,
Mimmo
,
E.
,
Matthew
,
F.
, and
Metghalchi
,
H.
,
2017
, “
Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures
,”
Appl. Energy
,
189
, pp.
568
577
.
57.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” accessed Jan. 30, 2019, http://ignis.usc.edu/USC_Mech_II.htm
You do not currently have access to this content.