In this paper, five biodiesel global combustion decomposition steps are added to a surrogate mechanism to accurately represent the chemical kinetics of the decomposition of different levels of saturation of biodiesel, which are represented by five major fatty acid methyl esters. The reaction constants were tuned based on the results from the numerical simulations of the combustion process in an ignition quality tester (IQT) in order to obtain accurate cetane numbers. The prediction of the complete thermophysical properties of the five constituents is also carried out to accurately represent the physics of the spray and vaporization processes. The results indicated that the combustion behavior is controlled more by the spray and breakup processes for saturated biodiesel constituents than by the chemical delay, which is similar to the diesel fuel combustion behavior. The chemical delay and low temperature reactions were observed to have greater effects on the combustion and ignition delay for the cases of the unsaturated biodiesels. The comparison between the physical ignition delay and overall ignition delay between the saturated and unsaturated biodiesel constituents has also confirmed those stronger effects for the physical delay in the saturated compounds as compared to the unsaturated compounds. The validation of the proposed model is conducted for the simulations of two direct injection diesel engines using palm methyl ester and rape methyl ester.

References

1.
Van Gerpen
,
J. H.
,
Peterson
,
C. L.
, and
Goering
,
C. E.
,
2007
, “
Biodiesel: An Alternative Fuel for Compression Ignition Engines
,” Agricultural Equipment Technology Conference, Louisville, KY, Feb. 11–14, Paper No. 31.
2.
Mueller
,
C. J.
,
Boehman
,
A. L.
, and
Martin
,
G. C.
,
2009
, “
An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine With Soy Biodiesel
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
789
816
.
3.
Westbrook
,
C. K.
,
Naik
,
C. V.
,
Herbinet
,
O.
,
Pitz
,
W. J.
,
Mehl
,
M.
,
Sarathy
,
S. M.
, and
Curran
,
H. J.
,
2011
, “
Detailed Chemical Kinetic Reaction Mechanisms for Soy and Rapeseed Biodiesel Fuels
,”
Combust. Flame
,
158
(
4
), pp.
742
755
.
4.
Saggese
,
C.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2013
, “
A Lumped Approach to the Kinetic Modeling of Pyrolysis and Combustion of Biodiesel Fuels
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
427
434
.
5.
Dagaut
,
P.
,
Gaı
,
S.
, and
Sahasrabudhe
,
M.
,
2007
, “
Rapeseed Oil Methyl Ester Oxidation Over Extended Ranges of Pressure, Temperature, and Equivalence Ratio: Experimental and Modeling Kinetic Study
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2955
2961
.
6.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,”
Los Alamos National Lab
,
Los Alamos, NM
, Report No.
LA–13313-MS
.https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/kiva/_assets/docs/KIVA-3V.pdf
7.
Gaïl
,
S.
,
Sarathy
,
S. M.
,
Thomson
,
M. J.
,
Diévart
,
P.
, and
Dagaut
,
P.
,
2008
, “
Experimental and Chemical Kinetic Modeling Study of Small Methyl Esters Oxidation: Methyl (E)-2-Butenoate and Methyl Butanoate
,”
Combust. Flame
,
155
(
4
), pp.
635
650
.
8.
Seshadri
,
K.
,
Lu
,
T.
,
Herbinet
,
O.
,
Humer
,
S.
,
Niemann
,
U.
,
Pitz
,
W. J.
,
Seiser
,
R.
, and
Law
,
C. K.
,
2009
, “
Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Non-Premixed Flows
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1067
1074
.
9.
Brakora
,
J. L.
,
Ra
,
Y.
,
Reitz
,
R. D.
,
McFarlane
,
J.
, and
Daw
,
C. S.
,
2009
, “
Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
675
702
.https://www.jstor.org/stable/26272041?seq=1#page_scan_tab_contents
10.
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Som
,
S.
,
Longman
,
D. E.
,
Sarathy
,
S. M.
, and
Pitz
,
W. J.
,
2012
, “
A Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications
,”
Fuel
,
99
, pp.
143
153
.
11.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Gan
,
S.
,
Lucchini
,
T.
, and
Onorati
,
A.
,
2013
, “
Development of a Reduced Biodiesel Combustion Kinetics Mechanism for CFD Modelling of a Light-Duty Diesel Engine
,”
Fuel
,
106
, pp.
388
400
.
12.
Liu
,
W.
,
Sivaramakrishnan
,
R.
,
Davis
,
M. J.
,
Som
,
S.
,
Longman
,
D. E.
, and
Lu
,
T. F.
,
2013
, “
Development of a Reduced Biodiesel Surrogate Model for Compression Ignition Engine Modeling
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
401
409
.
13.
Chang
,
Y.
,
Jia
,
M.
,
Li
,
Y.
,
Zhang
,
Y.
,
Xie
,
M.
,
Wang
,
H.
, and
Reitz
,
R. D.
,
2015
, “
Development of a Skeletal Oxidation Mechanism for Biodiesel Surrogate
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3037
3044
.
14.
Golovitchev
,
V. I.
, and
Yang
,
J.
,
2009
, “
Construction of Combustion Models for Rapeseed Methyl Ester Bio-Diesel Fuel for Internal Combustion Engine Applications
,”
Biotechnol. Adv.
,
27
(
5
), pp.
641
655
.
15.
Yang
,
J.
,
Luo
,
Z.
,
Lu
,
T.
, and
Golovitchev
,
V. I.
,
2013
, “
Kinetic Study of Methyl Palmitate Oxidation in a Jet-Stirred Reactor and an Opposed-Flow Diffusion Flame Using a Semidetailed Mechanism
,”
Combust. Sci. Technol.
,
185
(
5
), pp.
711
722
.
16.
An
,
H.
,
Yang
,
W. M.
,
Maghbouli
,
A.
,
Li
,
J.
, and
Chua
,
K. J.
,
2014
, “
A Skeletal Mechanism for Biodiesel Blend Surrogates Combustion
,”
Energy Convers. Manage.
,
81
, pp.
51
59
.
17.
Cheng
,
X.
,
Ng
,
H. K.
,
Gan
,
S.
,
Ho
,
J. H.
, and
Pang
,
K. M.
,
2015
, “
Development and Validation of a Generic Reduced Chemical Kinetic Mechanism for CFD Spray Combustion Modelling of Biodiesel Fuels
,”
Combust. Flame
,
162
(
6
), pp.
2354
2370
.
18.
Liu
,
T.
,
Jiaqiang
,
E.
,
Yang
,
W.
,
Hui
,
A.
, and
Cai
,
H.
,
2016
, “
Development of a Skeletal Mechanism for Biodiesel Blend Surrogates With Varying Fatty Acid Methyl Esters Proportion
,”
Appl. Energy
,
162
, pp.
278
288
.
19.
Yuan
,
W.
, and
Hansen
,
A. C.
,
2009
, “
Computational Investigation of the Effect of Biodiesel Fuel Properties on Diesel Engine NOx Emissions
,”
Int. J. Agric. Biol. Eng.
,
2
(
2
), pp.
41
48
.http://www.ijabe.org/index.php/ijabe/article/view/83
20.
Rochaya
,
D.
,
2007
, “
Numerical Simulation of Spray Combustion Using Bio-Mass Derived Liquid Fuels
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/2231
21.
Yang
,
J.
,
2012
, “
Biodiesel Spray Combustion Modeling Based on a Detailed Chemistry Approach
,”
Ph.D. thesis
, Chalmers University of Technology, Göteborg, Sweden.https://research.chalmers.se/en/publication/156147
22.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Cheng
,
X.
,
Gan
,
S.
,
Lucchini
,
T.
, and
D'Errico
,
G.
,
2012
, “
Development of Thermophysical and Transport Properties for the CFD Simulations of Incylinder Biodiesel Spray Combustion
,”
Energy Fuels
,
26
(
8
), pp.
4857
4870
.
23.
Bogin
,
G. E.
, Jr
,
DeFilippo
,
A.
,
Chen
,
J. Y.
,
Chin
,
G.
,
Luecke
,
J.
,
Ratcliff
,
M. A.
,
Zigler
,
B. T.
, and
Dean
,
A. M.
,
2011
, “
Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)
,”
Energy Fuels
,
25
(
12
), pp.
5562
5572
.
24.
ASTM International,
2013
, “
Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Combustion Chamber Method
,” ASTM International, Conshohocken, PA, Standard No. ASTM
D7668-13a
.
25.
Naik
,
C. V.
,
Puduppakkam
,
K.
,
Meeks
,
E.
, and
Liang
,
L.
,
2012
, “
Ignition Quality Tester Guided Improvements to Reaction Mechanisms for n-Alkanes: N-Heptane to n-Hexadecane
,”
SAE
Paper No. 2012-01-0149.
26.
Yang
,
J.
,
Johansson
,
M.
, and
Golovitchev
,
V.
,
2009
, “
Engine Performance and Emissions Formation for RME and Conventional Diesel Oil: A Comparative Study
,”
ASME
Paper No. ICES2009-76121.
27.
Bergman
,
M.
, and
Golovitchev
,
V.
,
2008
, “
Modification of a Diesel Oil Surrogate Model for 3D CFD Simulation of Conventional and HCCI Combustion
,”
SAE
Paper No. 2008-01-2410.
28.
Anand
,
K.
,
Sharma
,
R. P.
, and
Mehta
,
P. S.
,
2011
, “
A Comprehensive Approach for Estimating Thermo-Physical Properties of Biodiesel Fuels
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
235
242
.
29.
An
,
H.
,
Yang
,
W. M.
,
Maghbouli
,
A.
,
Chou
,
S. K.
, and
Chua
,
K. J.
,
2013
, “
Detailed Physical Properties Prediction of Pure Methyl Esters for Biodiesel Combustion Modeling
,”
Appl. Energy
,
102
, pp.
647
656
.
30.
Bondi
,
A.
,
1966
, “
Estimation of Heat Capacity of Liquids
,”
Ind. Eng. Chem. Fundam.
,
5
(
4
), pp.
442
449
.
31.
Daubert
,
T. E.
, and
Danner
,
R. P.
,
1989
,
Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation
,
Hemisphere
,
New York
.
32.
Pratas
,
M. J.
,
Freitas
,
S.
,
Oliveira
,
M. B.
,
Monteiro
,
S. C.
,
Lima
,
A. S.
, and
Coutinho
,
J. A.
,
2010
, “
Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
,”
J. Chem. Eng. Data
,
55
(
9
), pp.
3983
3990
.
33.
Blangino
,
E.
,
Riveros
,
A. F.
, and
Romano
,
S. D.
,
2008
, “
Numerical Expressions for Viscosity, Surface Tension and Density of Biodiesel: Analysis and Experimental Validation
,”
Phys. Chem. Liq.
,
46
(
5
), pp.
527
547
.
34.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1988
,
The Properties of Gases and Liquids
, 4th ed. McGraw-Hill, New York.
35.
Reaction Design, Inc.,
2013
, “
FORTE, FOR-UG-40132-1307-1
,” Reaction Design, San Diego, CA.
36.
Yang
,
J.
,
Golovitchev
,
V. I.
,
Naik
,
C. V.
, and
Meeks
,
E.
,
2012
, “
Comparative Study of Diesel Oil and Biodiesel Spray Combustion Based on Detailed Chemical Mechanisms
,”
ASME
Paper No. ICES2012-81162.
37.
Liang
,
L.
,
Shelburn
,
A.
,
Wang
,
C.
,
Hodgson
,
D.
, and
Meeks
,
E.
,
2011
, “
A New Automatic and Dynamic Mesh Generation Technique Based on Immersed Boundary Method
,”
International Multidimensional Engine Modeling User's Group Meeting
, Detroit, MI, Apr. 11, p. 6.https://www.erc.wisc.edu/imem/2011/Meeting-2011/4_Liang-Reaction_Design.pdf
38.
Elhalwagy
,
M.
, and
Zhang
,
C.
,
2015
, “
Modified Biodiesel Chemical Kinetics Based on Numerical Simulation in an Ignition Quality Tester
,”
25th Canadian Conference of Applied Mechanics
, London, ON, Canada, May 31–June 4, pp. 264–267.
39.
Liang
,
L.
,
Stevens
,
J. G.
, and
Farrell
,
J. T.
,
2009
, “
A Dynamic Multi-Zone Partitioning Scheme for Solving Detailed Chemical Kinetics in Reactive Flow Computations
,”
Combust. Sci. Technol.
,
181
(
11
), pp.
1345
1371
.
40.
Knothe
,
G.
,
2005
, “
Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters
,”
Fuel Process. Technol.
,
86
(
10
), pp.
1059
1070
.
41.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
, and
Sattler
,
E.
,
2013
, “
Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061501
.
42.
Ng
,
H. K.
,
Gan
,
S.
,
Ng
,
J. H.
, and
Pang
,
K. M.
,
2013
, “
Development and Validation of a Reduced Combined Biodiesel-Diesel Reaction Mechanism
,”
Fuel
,
104
, pp.
620
663
.
You do not currently have access to this content.