Thermoelectric generators (TEGs) can harvest energy without any negative environmental impact using low potential sources, such as waste heat, and subsequently convert that energy into electricity. Different shaped leg geometries and nanostructured thermoelectric materials have been investigated over the last decades in order to improve the thermal efficiency of the TEGs. In this paper, a numerical study on the performance analysis of a nanomaterial-based (i.e., p-type leg composed of BiSbTe nanostructured bulk alloy and n-type leg composed of Bi2Te3 with 0.1 vol % SiC nanoparticles) trapezoidal-shaped leg geometry has been investigated considering the Seebeck effect, Peltier effect, Thomson effect, Fourier heat conduction, and surface to surrounding irreversible heat transfer loss. Different surface convection heat transfer losses (h) are considered to characterize the current output, power output, and thermal efficiency at various hot surface (TH) and cold surface (TC) temperatures. Good agreement has been achieved between the numerical and analytical results. Moreover, current numerical results are compared with previous related works. The designed nanomaterial-based TEG shows better performance in terms of output current and thermal efficiency with the thermal efficiency increasing from 7.3% to 8.7% using nanomaterial instead of traditional thermoelectric materials at h = 0 W/m2K while TH is 500 K and TC is 300 K.

References

References
1.
Yuan
,
R.
,
Deng
,
Y.
,
Hu
,
T.
,
Su
,
C.
, and
Liu
,
X.
,
2018
, “
Energy Efficient Thermoelectric Generator-Powered Localized Air-Conditioning System Applied in a Heavy-Duty Vehicle
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072007
.
2.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022001
.
3.
Wan
,
C.
,
Tian
,
R.
,
Azizi
,
A. B.
,
Huang
,
Y.
,
Wei
,
Q.
,
Sasai
,
R.
,
Wasusate
,
S.
,
Ishida
,
T.
, and
Koumoto
,
K.
,
2016
, “
Flexible Thermoelectric Foil for Wearable Energy Harvesting
,”
Nano Energy
,
30
, pp.
840
845
.
4.
Kim
,
S. L.
,
Hsu
,
J.
, and
Yu
,
C.
,
2018
, “
Intercalated Graphene Oxide for Flexible and Practically Large Thermoelectric Voltage Generation and Simultaneous Energy Storage
,”
Nano Energy
,
48
, pp.
582
589
.
5.
Liu
,
T.
, and
Yang
,
Z.
,
2018
, “
Performance Assessment and Optimization of a Thermophotovoltaic Converter–Thermoelectric Generator Combined System
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072010
.
6.
Fuqiang
,
C.
,
Yanji
,
H.
, and
Chao
,
Z.
,
2014
, “
A Physical Model for Thermoelectric Generators With and Without Thomson Heat
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011201
.
7.
Sahin
,
A. Z.
, and
Yilbas
,
B. S.
,
2013
, “
The Thermoelement as Thermoelectric Power Generator: Effect of Leg Geometry on the Efficiency and Power Generation
,”
Energy Convers. Manage.
,
65
, pp.
26
32
.
8.
Khan
,
A. U.
,
Kobayashi
,
K.
,
Tang
,
D. M.
,
Yamauchi
,
Y.
,
Hasegawa
,
K.
,
Mitome
,
M.
,
Xue
,
Y.
,
Jiang
,
B.
,
Tsuchiya
,
K.
,
Golberg
,
D.
,
Bando
,
Y.
, and
Mori
,
T.
,
2017
, “
Nano-Micro-Porous Skutterudites With 100% Enhancement in ZT for High Performance Thermoelectricity
,”
Nano Energy
,
31
, pp.
152
159
.
9.
Tang
,
H.
,
Sun
,
F. H.
,
Dong
,
J. F.
,
Asfandiyar, Zhuang
,
H. L.
,
Pan
,
Y.
, and
Li
,
J. F.
,
2018
, “
Graphene Network in Copper Sulfide Leading to Enhanced Thermoelectric Properties and Thermal Stability
,”
Nano Energy
,
49
, pp.
267
273
.
10.
Erturun
,
U.
,
Erermis
,
K.
, and
Mossi
,
K.
,
2014
, “
Effect of Various Leg Geometries on Thermo-Mechanical and Power Generation Performance of Thermoelectric Devices
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
128
141
.
11.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2006
, “
Progress Towards Maximizing the Performance of a Thermoelectric Power Generator
,”
26th International Conference on Thermoelectrics (ICT)
, Vienna, Austria, Aug. 6–10, pp. 11–16.
12.
Al-Merbati
,
A. S.
,
Yilbas
,
B. S.
, and
Sahin
,
A. Z.
,
2013
, “
Thermodynamics and Thermal Stress Analysis of Thermoelectric Power Generator: Influence of Pin Geometry on Device Performance
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
683
692
.
13.
Ali
,
H.
,
Sahin
,
A. Z.
, and
Yilbas
,
B. S.
,
2014
, “
Thermodynamic Analysis of a Thermoelectric Power Generator in Relation to Geometric Configuration Device Pins
,”
Energy Convers. Manage.
,
78
, pp.
634
640
.
14.
Lamba
,
R.
, and
Kaushik
,
S. C.
,
2017
, “
Thermodynamic Analysis of Thermoelectric Generator Including Influence of Thomson Effect and Leg Geometry Configuration
,”
Energy Convers. Manage.
,
144
, pp.
388
398
.
15.
Rabari
,
R.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2014
, “
Numerical Simulation of Nano-Structured Thermoelectric Generator Considering Surface to Surrounding Convection
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
146
151
.
16.
Xiao
,
H.
,
Gou
,
X.
, and
Yang
,
S.
,
2011
, “
Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System
,”
J. Electron. Mater.
,
40
(
5
), pp.
1195
1201
.
17.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2013
, “
Thermoelectric Performance of Novel Composite and Integrated Devices Applied to Waste Heat Recovery
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031706
.
18.
Ma
,
Y.
,
Heijl
,
R.
, and
Palmqvist
,
A. E. C.
,
2013
, “
Composite Thermoelectric Materials With Embedded Nanoparticles
,”
J. Mater. Sci.
,
48
(
7
), pp.
2767
2778
.
19.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
,
Wang
,
D.
,
Muto
,
A.
,
Vashaee
,
D.
,
Chen
,
X.
,
Liu
,
J.
,
Mildred
,
S.
,
Dresselhaus
,
S. M.
,
Chen
,
G.
, and
Ren
,
Z.
,
2008
, “
High-Thermoelectric Performance of Nano-Structured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
(
5876
), pp.
634
638
.
20.
Zhao
,
L. D.
,
Zhang
,
B. P.
,
Li
,
J. F.
,
Zhou
,
M.
,
Liu
,
W. S.
, and
Liu
,
J.
,
2008
, “
Thermoelectric and Mechanical Properties of Nano-SiC-Dispersed Bi2Te3 Fabricated by Mechanical Alloying and Spark Plasma Sintering
,”
J. Alloys Compd.
,
455
(
1–2
), pp.
259
264
.
21.
Li
,
H.
,
Tang
,
X.
,
Zhang
,
Q.
, and
Uher
,
C.
,
2009
, “
High Performance InxCeyCo4Sb12 Thermoelectric Materials With in Situ Forming Nano-Structured InSb Phase
,”
Appl. Phys. Lett.
,
94
, p.
102114
.
22.
Angrist
,
S. W.
,
1982
,
Direct Energy Conversion
,
4th ed.
,
Allyn and Bacon
,
Boston, MA
.
23.
Pereez-Aparcio
,
J. L.
,
Palma
,
R.
, and
Taylor
,
R. L.
,
2012
, “
Finite Element Analysis and Material Sensitivity of Peltier Thermoelectric Cells Coolers
,”
Int. J. Heat Mass Tranfer
,
55
, pp.
1363
1374
.
24.
Yilbas
,
B. S.
, and
Sahin
,
A. Z.
,
2010
, “
Thermoelectric Device and Optimum External Load Parameter and Slenderness Ratio
,”
Energy
,
35
(
12
), pp.
5380
5384
.
25.
Bentley, R.,
1998
, “
Theory and Practice of Thermoelectric Thermometry
,” Handbook of Temperature Measurement, Vol.
3
,
Springer
,
Cham, Switzerland
.
26.
Rabari
,
R.
,
Mahmud
,
S.
,
Dutta
,
A.
, and
Biglarbegian
,
M.
,
2015
, “
Effect of Convection Heat Transfer on Performance of Waste Heat Thermoelectric Generator
,”
Heat Transfer Eng.
,
36
(
17
), pp.
1458
1471
.
You do not currently have access to this content.