In this paper, a parabolic trough solar collector (PTSC) plant is combined with a liquid air energy storage (LAES) system. The genetic algorithm (GA) is used to optimize the proposed system for different air storage mass flow rates. The roundtrip exergy ratio is considered as the objective function and pressures of six points and mass flow rates of five points are considered as design parameters. The effects of some environmental and key parameters such as different radiation intensities, ambient temperatures, output pressures of the second compressor, and mass flow rates of the collectors fluid on the exergy ratio are investigated. The results revealed that the system could produce 17526.15 kJ/s (17.5 MW) power in high demands time and 2233.48 kJ/s (2.2 MW) power in low demands time and the system shows that a value of 15.13% round trip exergy ratio is achievable. Furthermore, the exergy ratio decreased by 5.1% when the air storage mass flow rate increased from 10 to 15 kg/s. Furthermore, the exergy ratio decreases by increasing the collectors inside fluid mass flow rate or by decreasing radiation intensity.

References

References
1.
Abid
,
M.
,
Ratlamwala
,
T. A. H.
, and
Atikol
,
U.
,
2016
, “
Performance Assessment of Parabolic Dish and Parabolic Trough Solar Thermal Power Plant Using Nanofluids and Molten Salts
,”
Int. J. Energy Res.
,
40
(
4
), pp.
550
563
.
2.
Dincer
,
I.
,
2000
, “
Renewable Energy and Sustainable Development: A Crucial Review
,”
Renewable Sustainable Energy Rev.
,
4
(
2
), pp.
157
175
.
3.
Derakhshan
,
S.
, and
Yazdani
,
A.
,
2016
, “
Modeling of a Refrigerator in Disaster Vehicle, Using Solar Energy and Engine Exhaust Gases Heat
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052008
.
4.
Luo
,
X.
,
Wang
,
J.
,
Dooner
,
M.
, and
Clarke
,
J.
,
2015
, “
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
,”
Appl. Energy
,
137
, pp.
511
536
.
5.
Zhang
,
Y.
,
Yang
,
K.
,
Hong
,
H.
,
Zhong
,
X.
, and
Xu
,
J.
,
2016
, “
Thermodynamic Analysis of a Novel Energy Storage System With Carbon Dioxide as Working Fluid
,”
Renewable Energy
,
99
, pp.
682
697
.
6.
Kantharaj
,
B.
,
Garvey
,
S.
, and
Pimm
,
A.
,
2015
, “
Compressed Air Energy Storage With Liquid Air Capacity Extension
,”
Appl. Energy
,
157
, pp.
152
164
.
7.
Xue
,
X. D.
,
Wang
,
S. X.
,
Zhang
,
X. L.
,
Cui
,
C.
,
Chen
,
L. B.
,
Zhou
,
Y.
, and
Wang
,
J. J.
,
2015
, “
Thermodynamic Analysis of a Novel Liquid Air Energy Storage System
,”
Phys. Procedia
,
67
, pp.
733
738
.
8.
Guizzi
,
G. L.
,
Manno
,
M.
,
Tolomei
,
L. M.
, and
Vitali
,
R. M.
,
2015
, “
Thermodynamic Analysis of a Liquid Air Energy Storage System
,”
Energy
,
93
, pp.
1639
1647
.
9.
Kantharaj
,
B.
,
Garvey
,
S.
, and
Pimm
,
A.
,
2015
, “
Thermodynamic Analysis of a Hybrid Energy Storage System Based on Compressed Air and Liquid Air
,”
Sustainable Energy Technol. Assess.
,
11
, pp.
159
164
.
10.
Morgan
,
R.
,
Nelmes
,
S.
,
Gibson
,
E.
, and
Brett
,
G.
,
2015
, “
Liquid Air Energy Storage—Analysis and First Results From a Pilot Scale Demonstration Plant
,”
Appl. Energy
,
137
, pp.
845
853
.
11.
Pimm
,
A. J.
,
Garvey
,
S. D.
, and
Kantharaj
,
B.
,
2015
, “
Economic Analysis of a Hybrid Energy Storage System Based on Liquid Air and Compressed Air
,”
J. Energy Storage
,
4
, pp.
24
35
.
12.
Antonelli
,
M.
,
Desideri
,
U.
,
Giglioli
,
R.
,
Paganucci
,
F.
, and
Pasini
,
G.
,
2016
, “
Liquid Air Energy Storage: A Potential Low Emissions and Efficient Storage System
,”
Energy Procedia
,
88
, pp.
693
697
.
13.
Luyao
,
L.
,
Sixian
,
W.
,
Zhang
,
D.
,
Luwei
,
Y.
,
Yuan
,
Z.
, and
Junjie
,
W.
,
2017
, “
Performance Analysis of Liquid Air Energy Storage Utilizing LNG Cold Energy
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
171
(1), p. 012032.
14.
Boyaghchi
,
F. A.
, and
Sabaghian
,
M.
,
2016
, “
Multi Objective Optimisation of a Kalina Power Cycle Integrated With Parabolic Trough Solar Collectors Based on Exergy and Exergoeconomic Concept
,”
Int. J. Energy Technol. Policy
,
12
(
2
), pp.
154
180
.
15.
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Demirkaya
,
G.
,
Martinez
,
A.
, and
Quiroga
,
A. G.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Receiver
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
579
586
.
16.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
.
17.
Al-Sulaiman
,
F. A.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Collectors Integrated With Combined Steam and Organic Rankine Cycles
,”
Energy Convers. Manage.
,
77
, pp.
441
449
.
18.
Ashouri
,
M.
,
Khoshkar Vandani
,
A. M.
,
Mehrpooya
,
M.
,
Ahmadi
,
M. H.
, and
Abdollahpour
,
A.
,
2015
, “
Techno-Economic Assessment of a Kalina Cycle Driven by a Parabolic Trough Solar Collector
,”
Energy Convers. Manage.
,
105
, pp.
1328
1339
.
19.
Toghyani
,
S.
,
Baniasadi
,
E.
, and
Afshari
,
E.
,
2016
, “
Thermodynamic Analysis and Optimization of an Integrated Rankine Power Cycle and Nano-Fluid Based Parabolic Trough Solar Collector
,”
Energy Convers. Manage.
,
121
, pp.
93
104
.
20.
Guo
,
J.
, and
Huai
,
X.
,
2016
, “
Multi-Parameter Optimization Design of Parabolic Trough Solar Receiver
,”
Appl. Therm. Eng.
,
98
, pp.
73
79
.
21.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector With Cu-Therminol VP-1 Nanofluid
,”
Energy Convers. Manage.
,
120
, pp.
449
465
.
22.
Jamal-Abad
,
M. T.
,
Saedodin
,
S.
, and
Aminy
,
M.
,
2017
, “
Experimental Investigation on a Solar Parabolic Trough Collector for Absorber Tube Filled With Porous Media
,”
Renewable Energy
,
107
, pp.
156
163
.
23.
Jradi
,
M.
, and
Riffat
,
S.
,
2014
, “
Modelling and Testing of a Hybrid Solar-Biomass ORC-Based Micro-CHP System
,”
Int. J. Energy Res.
,
38
(
8
), pp.
1039
1052
.
24.
Wang
,
Y.
,
Ding
,
X.
,
Tang
,
L.
, and
Weng
,
Y.
,
2016
, “
Effect of Evaporation Temperature on the Performance of Organic Rankine Cycle in Near-Critical Condition
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032001
.
25.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
.
26.
Al-Sulaiman
,
F. A.
, and
Atif
,
M.
,
2015
, “
Performance Comparison of Different Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Power Tower
,”
Energy
,
82
, pp.
61
71
.
27.
Hofmann
,
M.
, and
Tsatsaronis
,
G.
,
2016
, “
Exergy-Based Study of a Binary Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
138
(6), p. 062003.
28.
Duffie
,
J.
, and
Beckman
,
W.
,
2013
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
Wiley
, Hoboken, NJ.
29.
Kalogirou
,
S.
,
2009
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
, Oxford, UK.
30.
Cakici
,
D. M.
,
Erdogan
,
A.
, and
Colpan
,
C. O.
,
2017
, “
Thermodynamic Performance Assessment of an Integrated Geothermal Powered Supercritical Regenerative Organic Rankine Cycle and Parabolic Trough Solar Collectors
,”
Energy
,
120
, pp.
306
319
.
31.
Reddy
,
V. S.
,
Kaushik
,
S. C.
, and
Tyagi
,
S. K.
,
2012
, “
Exergetic Analysis and Performance Evaluation of Parabolic Trough Concentrating Solar Thermal Power Plant (PTCSTPP)
,”
Energy
,
39
(
1
), pp.
258
273
.
32.
Qiu
,
Y.
,
Li
,
M.-J.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2016
, “
Thermal Performance Analysis of a Parabolic Trough Solar Collector Using Supercritical CO2 as Heat Transfer Fluid Under Non-Uniform Solar Flux
,”
Appl. Therm. Eng.
,
115
, pp.
1255
1265
.
33.
Kalogirou
,
S. A.
,
Karellas
,
S.
,
Braimakis
,
K.
,
Stanciu
,
C.
, and
Badescu
,
V.
,
2016
, “
Exergy Analysis of Solar Thermal Collectors and Processes
,”
Prog. Energy Combust. Sci.
,
56
, pp.
106
137
.
34.
Petela
,
R.
,
2005
, “
Exergy Analysis of the Solar Cylindrical-Parabolic Cooker
,”
Sol. Energy
,
79
(
3
), pp.
221
233
.
35.
Mohanraj
,
M.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2009
, “
Exergy Analysis of Direct Expansion Solar-Assisted Heat Pumps Using Artificial Neural Networks
,”
Int. J. Energy Res.
,
33
(
11
), pp.
1005
1020
.
36.
Neri
,
M.
,
Luscietti
,
D.
, and
Pilotelli
,
M.
,
2017
, “
Computing the Exergy of Solar Radiation From Real Radiation Data
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061201
.
37.
Rao
,
S. S.
,
2012
,
Engineering Optimization Theory and Practice
, Hoboken, NJ.
You do not currently have access to this content.