The vertical wind shear is one of the major sources of fatigue loads on the blades of a horizontal axis wind turbine. Traditionally, the active individual pitch control system is used to alleviate the cyclic load fluctuations, which requires sensors and actuators. In this paper, a passive load control technique by using backward swept blades is explored of its potential capability of mitigating load variations in shear wind. An advanced aeroelastic model based on free wake vortex lattice model (FWVLM) and geometrically exact beam theory (GEBT) is developed for the study. Both the aerodynamic and structural solvers are able to account for the three-dimensional (3D) shape effects of the undeformed and deformed swept blades. The NREL 5-MW reference wind turbine is analyzed by adding backward sweep to the baseline blade. Comparisons are made between the baseline and swept blades for the time-varying root moments and rotor moments under sheared inflow. Different amounts of tip sweep are discussed. An effective reduction in the amplitude of the flapwise root moment variations is obtained, while the edgewise root moment is less influenced. Reduced mean values of the rotor yaw and tilt moments are also achieved, at the cost of increased blade root torsion moment.

References

References
1.
Madsen
,
H. A.
,
Riziotis
,
V.
,
Zahle
,
F.
,
Hansen
,
M. O. L.
,
Snel
,
H.
,
Grasso
,
F.
,
Larsen, T. J.
,
Politis, E.
, and
Rasmussen, F.
,
2012
, “
Blade Element Momentum Modeling of Inflow With Shear in Comparison With Advanced Model Results
,”
Wind Energy
,
15
(
1
), pp.
63
81
.
2.
Bossanyi
,
E. A.
,
2003
, “
Individual Blade Pitch Control for Load Reduction
,”
Wind Energy
,
6
(
2
), pp.
119
128
.
3.
Larsen
,
T. J.
,
Madsen
,
H. A.
, and
Thomsen
,
K.
,
2005
, “
Active Load Reduction Using Individual Pitch, Based on Local Blade Flow Measurements
,”
Wind Energy
,
8
(
1
), pp.
67
80
.
4.
Shen
,
X.
,
Zhu
,
X.
, and
Du
,
Z.
,
2011
, “
Wind Turbine Aerodynamics and Loads Control in Wind Shear Flow
,”
Energy
,
36
(
3
), pp.
1424
1434
.
5.
Camblong
,
H.
,
Nourdine
,
S.
,
Vechiu
,
I.
, and
Tapia
,
G.
,
2012
, “
Control of Wind Turbines for Fatigue Loads Reduction and Contribution to the Grid Primary Frequency Regulation
,”
Energy
,
48
(
1
), pp.
284
291
.
6.
Kragh
,
K. A.
, and
Hansen
,
M. H.
,
2014
, “
Load Alleviation of Wind Turbines by Yaw Misalignment
,”
Wind Energy
,
17
(
7
), pp.
971
982
.
7.
Jeong
,
M. S.
,
Cha
,
M. C.
,
Kim
,
S. W.
, and
Lee
,
I.
,
2015
, “
Numerical Investigation of Optimal Yaw Misalignment and Collective Pitch Angle for Load Imbalance Reduction of Rigid and Flexible HAWT Blades Under Sheared Inflow
,”
Energy
,
84
, pp.
518
532
.
8.
Lago
,
L. I.
,
Ponta
,
F. L.
, and
Otero
,
A. D.
,
2013
, “
Analysis of Alternative Adaptive Geometrical Configurations for the NREL-5 MW Wind Turbine Blade
,”
Renewable Energy
,
59
, pp.
13
22
.
9.
de Vaal
,
J. B.
,
Nygaard
,
T. A.
, and
Stenbro
,
R.
,
2016
, “
Developing a Passive Load Reduction Blade for the DTU 10 MW Reference Turbine
,”
J. Phys.: Conf. Ser.
,
753
, p.
042004
.
10.
Lobitz
,
D. W.
, and
Veers
,
P. S.
,
2003
, “
Load Mitigation With Bending/Twist-Coupled Blades on Rotors Using Modern Control Strategies
,”
Wind Energy
,
6
(
2
), pp.
105
117
.
11.
Liebst
,
B. S.
,
1986
, “
Wind Turbine Gust Load Alleviation Utilizing Curved Blades
,”
J. Propul. Power
,
2
(
4
), pp.
371
377
.
12.
Zuteck
,
M.
,
2002
,
Adaptive Blade Concept Assessment: Curved Planform Induced Twist Investigation
, Sandia National Laboratories, Albuquerque, NM.
13.
Ashwill
,
T.
,
2010
, “
Sweep-Twist Adaptive Rotor Blade: Final Project Report
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2009-8037
.https://windpower.sandia.gov/other/098037.pdf
14.
Larwood
,
S.
, and
Zuteck
,
M.
,
2006
, “
Swept Wind Turbine Blade Aeroelastic Modeling for Loads and Dynamic Behavior
,”
AWEA Wind
, Pittsburgh, PA, June 4–7, pp.
1
17
.https://www.researchgate.net/publication/253841921_Swept_Wind_Turbine_Blade_Aeroelastic_Modeling_for_Loads_and_Dynamic_Behavior
15.
Verelst
,
D. R.
, and
Larsen
,
T. J.
,
2010
, “
Load Consequences When Sweeping Blades—A Case Study of a 5 MW Pitch Controlled Wind Turbine
,” Forskningscenter Risoe, Denmark, Report No.
Risoe-R-1724(EN)
.http://orbit.dtu.dk/files/4610035/ris-r-1724.pdf
16.
Larwood
,
S.
,
van Dam
,
C. P.
, and
Schow
,
D.
,
2014
, “
Design Studies of Swept Wind Turbine Blades
,”
Renewable Energy
,
71
, pp.
563
571
.
17.
Pavese
,
C.
,
Kim
,
T.
, and
Murcia
,
J. P.
,
2017
, “
Design of a Wind Turbine Swept Blade Through Extensive Load Analysis
,”
Renewable Energy
,
102
, pp.
21
34
.
18.
Pavese
,
C.
,
Tibaldi
,
C.
,
Zahle
,
F.
, and
Kim
,
T.
,
2017
, “
Aeroelastic Multidisciplinary Design Optimization of a Swept Wind Turbine Blade
,”
Wind Energy
,
20
(12), pp. 1941–1953.
19.
Larwood
,
S.
, and
van Dam
,
C. P.
,
2013
, “
Dynamic Analysis Tool Development for Swept Wind Turbine Blades
,”
Wind Energy
,
16
(
6
), pp.
879
907
.
20.
Ahlström
,
A.
,
2006
, “
Influence of Wind Turbine Flexibility on Loads and Power Production
,”
Wind Energy
,
9
(
3
), pp.
237
249
.
21.
Rafiee
,
R.
,
Tahani
,
M.
, and
Moradi
,
M.
,
2016
, “
Simulation of Aeroelastic Behavior in a Composite Wind Turbine Blade
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
60
69
.
22.
Wang
,
L.
,
Quant
,
R.
, and
Kolios
,
A.
,
2016
, “
Fluid Structure Interaction Modelling of Horizontal-Axis Wind Turbine Blades Based on CFD and FEA
,”
J. Wind Eng. Ind. Aerodyn.
,
158
, pp.
11
25
.
23.
Mishra
,
N.
,
Gupta
,
A. S.
,
Dawar
,
J.
,
Kumar
,
A.
, and
Mitra
,
S.
,
2018
, “
Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
121201
.
24.
Rodriguez
,
S. N.
, and
Jaworski
,
J. W.
,
2017
, “
Toward Identifying Aeroelastic Mechanisms in Near-Wake Instabilities of Floating Offshore Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
139
, p.
051203
.
25.
Bauchau
,
O. A.
,
2013
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
26.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
,
American Institute of Aeronautics and Astronautics
,
Reston, VI
.
27.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G. C.
, and
Mussi, F.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
(
1–4
), pp.
403
413
.
28.
Reissner
,
E.
,
1973
, “
On One-Dimensional Large-Displacement Finite-Strain Beam Theory
,”
Stud. Appl. Math.
, 52(2), pp.
87
95
.
29.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
30.
Borri
,
M.
, and
Merlini
,
T.
,
1986
, “
A Large Displacement Formulation for Anisotropic Beam Analysis
,”
Meccanica
,
21
(
1
), pp.
30
–3
7
.
31.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
–2
62
.
32.
Bauchau
,
O. A.
, and
Hong
,
C. H.
,
1988
, “
Nonlinear Composite Beam Theory
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
156
–1
63
.
33.
Bauchau
,
O. A.
, and
Kang
,
N. K.
,
1993
, “
A Multibody Formulation for Helicopter Structural Dynamic Analysis
,”
J. Am. Helicopter Soc.
,
38
, pp.
3
14
.
34.
Shen
,
X.
,
Yang
,
H.
,
Chen
,
J.
,
Zhu
,
X.
, and
Du
,
Z.
,
2016
, “
Aerodynamic Shape Optimization of Non-Straight Small Wind Turbine Blades
,”
Energy Convers. Manag.
,
119
, pp.
266
–2
78
.
35.
Johnson
,
N. A.
,
2014
, “
A Verification and Validation of the Geometrically Exact Beam Theory With Legendre Spectral Finite Elements for Wind Turbine Blade Analysis
,”
thesis
, Colorado School of Mines, Golden, CO.https://mountainscholar.org/bitstream/handle/11124/17010/Johnson_mines_0052N_10590.pdf?sequence=1
36.
Bathe
,
K. J.
, and
Bolourchi
,
S.
,
1979
, “
Large Displacement Analysis of Three-Dimensional Beam Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
7
), pp.
961
–9
86
.
37.
Romero
,
I.
,
2008
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
51
68
.
38.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
You do not currently have access to this content.