Reservoir characterization is a process to make dependable reservoir models using available reservoir information. There are promising ensemble-based methods such as ensemble Kalman filter (EnKF), ensemble smoother (ES), and ensemble smoother with multiple data assimilation (ES-MDA). ES-MDA is an iterative version of ES with inflated covariance matrix of measurement errors. It provides efficient and consistent global updates compared to EnKF and ES. Ensemble-based method might not work properly for channel reservoirs because its parameters are highly non-Gaussian. Thus, various parameterization methods are suggested in previous studies to handle nonlinear and non-Gaussian parameters. Discrete cosine transform (DCT) can figure out essential channel information, whereas level set method (LSM) has advantages on detailed channel border analysis in grid scale transforming parameters into Gaussianity. However, DCT and LSM have weaknesses when they are applied separately on channel reservoirs. Therefore, we propose a properly designed combination algorithm using DCT and LSM in ES-MDA. When DCT and LSM agree with each other on facies update results, a grid has relevant facies naturally. If not, facies is assigned depending on the average facies probability map from DCT and LSM. By doing so, they work in supplementary way preventing from wrong or biased decision on facies. Consequently, the proposed method presents not only stable channel properties such as connectivity and continuity but also similar pattern with the true. It also gives trustworthy future predictions of gas and water productions due to well-matched facies distribution according to the reference.

References

References
1.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2005
, “
History Matching of the PUNQ-S3 Reservoir Model Using the Ensemble Kalman Filter
,”
SPE J.
,
10
(
2
), pp.
217
224
.
2.
Gavalas
,
G. R.
,
Shah
,
P. C.
, and
Seinfeld
,
J. H.
,
1976
, “
Reservoir History Matching by Bayesian Estimation
,”
SPE J.
,
16
(
6
), pp.
337
350
.
3.
Milliken
,
W. J.
,
Emanuel
,
A. S.
, and
Chakravarty
,
A.
,
2000
, “
Applications of 3D Streamline Simulation to Assist History Matching
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 1–4, SPE Paper No.
SPE-63155-MS
.
4.
Roggero
,
F.
,
Ding
,
D. Y.
,
Berthet
,
P.
,
Lerat
,
O.
,
Cap
,
J.
, and
Schreiber
,
P. E.
,
2007
, “
Matching of Production History and 4D Seismic Data-Application to the Girassol Field, Offshore Angola
,”
SPE Annual Technical Conference and Exhibition
, Anaheim, CA, Nov. 11–14, SPE Paper No.
SPE-109929-MS
.
5.
Van Leeuwen
,
P. J.
, and
Evensen
,
G.
,
1996
, “
Data Assimilation and Inverse Methods in Terms of a Probabilistic Formulation
,”
Mon. Weather Rev.
,
124
(
12
), pp.
2898
2913
.
6.
Evensen
,
G.
,
1994
, “
Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
,
99
(
C5
), pp.
10143
10162
.
7.
Nævdal
,
G.
,
Manneseth
,
T.
, and
Vefring
,
E. H.
,
2002
, “
Near-Well Reservoir Monitoring Through Ensemble Kalman Filter
,”
SPE/DOE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 13–17, SPE Paper No.
SPE-75235-MS
.
8.
Emerick
,
A. A.
, and
Reynolds
,
A. C.
,
2013
, “
Ensemble Smoother With Multiple Data Assimilations
,”
Comput. Geosci.
,
55
, pp.
3
15
.
9.
Emerick
,
A. A.
, and
Reynolds
,
A. C.
,
2012
, “
History Matching Time-Lapse Seismic Data Using the Ensemble Kalman Filter With Multiple Data Assimilations
,”
Comput. Geosci.
,
16
(
3
), pp.
639
659
.
10.
Zhao
,
Y.
,
Forouzanfar
,
F.
, and
Reynolds
,
A. C.
,
2016
, “
History Matching of Multi-Facies Channelized Reservoirs Using ES-MDA With Common Basis DCT
,”
Comput. Geosci.
,
21
(
86
), pp.
1
22
.
11.
Park
,
K.
, and
Choe
,
J.
,
2006
, “
Use of Ensemble Kalman Filter to 3-Dimensional Reservoir Characterization During Waterflooding
,”
SPE Europec/EAGE Annual Conference and Exhibition
, Vienna, Austria, June 12–15, SPE Paper No.
SPE-100178-MS
.
12.
Yeo
,
M. J.
,
Jung
,
S. P.
, and
Choe
,
J.
,
2014
, “
Covariance Matrix Localization Using Drainage Area in an Ensemble Kalman Filter
,”
Energy Sources, Part A
,
36
(
19
), pp.
2154
2165
.
13.
Lee
,
K.
,
Jung
,
S. P.
,
Shin
,
H.
, and
Choe
,
J.
,
2014
, “
Uncertainty Quantification of Channelized Reservoir Using Ensemble Smoother With Selective Measurement Data
,”
Energy Explor. Exploit.
,
32
(
5
), pp.
805
816
.
14.
Kang
,
B.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Improvement of Ensemble Smoother With SVD-Assisted Sampling Scheme
,”
J. Pet. Sci. Eng.
,
141
, pp.
114
124
.
15.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042903
.
16.
Kang
,
B.
,
Yang
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032907
.
17.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S. P.
, and
Choe
,
J.
,
2013
, “
Characterization of Channelized Reservoir Using Ensemble Kalman Filter With Clustered Covariance
,”
Energy Explor. Exploit.
,
31
(
1
), pp.
17
29
.
18.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S. P.
, and
Choe
,
J.
,
2013
, “
Improvement of Ensemble Smoother With Clustered Covariance for Channelized Reservoirs
,”
Energy Explor. Exploit.
,
31
(
5
), pp.
713
726
.
19.
Lee
,
K.
,
Jung
,
S.
,
Lee
,
T.
, and
Choe
,
J.
,
2016
, “
Use of Clustered Covariance and Selective Measurement Data in Ensemble Smoother for Three-Dimensional Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022905
.
20.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Initial Model Selection for Efficient History Matching of Channel Reservoirs Using Ensemble Smoother
,”
J. Pet. Sci. Eng.
,
152
, pp.
294
308
.
21.
Lee
,
K.
,
Lim
,
J.
,
Choe
,
J.
, and
Lee
,
H. S.
,
2017
, “
Regeneration of Channelized Reservoirs Using History-Matched Facies-Probability Map Without Inverse Scheme
,”
J. Pet. Sci. Eng.
,
149
, pp.
340
350
.
22.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
23.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2016
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012906
.
24.
Oliver
,
D. S.
, and
Chen
,
Y.
,
2011
, “
Recent Progress on Reservoir History Matching: A Review
,”
Comput. Geosci.
,
15
(
1
), pp.
185
221
.
25.
Sarma
,
P.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
,
2008
, “
Kernel Principal Component Analysis for Efficient Differentiable Parameterization of Multipoint Geostatistics
,”
Math. Geosci.
,
40
(
1
), pp.
3
32
.
26.
Lorentzen
,
R. J.
,
Nævdal
,
G.
, and
Shafieirad
,
A.
,
2013
, “
Estimating Facies Fields by Use of the Ensemble Kalman Filter and Distance Functions-Applied to Shallow-Marine Environments
,”
SPE J.
,
3
(
1
), pp.
146
158
.
27.
Lorentzen
,
R. J.
,
Flornes
,
K. M.
, and
Nævdal
,
G.
,
2012
, “
History Matching Channelized Reservoirs Using the Ensemble Kalman Filter
,”
SPE J.
,
17
(
1
), pp.
137
151
.
28.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2008
, “
History Matching With an Ensemble Kalman Filter and Discrete Cosine Parameterization
,”
Comput. Geosci.
,
12
(
2
), pp.
227
244
.
29.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Reservoir Characterization With the Discrete Cosine Transform
,”
SPE J.
,
14
(
1
), pp.
182
201
.
30.
Kim
,
S.
,
Lee
,
C.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Characterization of Channel Oil Reservoirs With an Aquifer Using EnKF, DCT, and PFR
,”
Energy Explor. Exploit.
,
34
(
6
), pp.
828
843
.
31.
Kim
,
S.
,
Lee
,
C.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Characterization of Channelized Gas Reservoirs Using Ensemble Kalman Filter With Application of Discrete Cosine Transformation
,”
Energy Explor. Exploit.
,
34
(
2
), pp.
319
336
.
32.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
33.
Kim
,
S.
,
Lee
,
C.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Aquifer Characterization of Gas Reservoirs Using Ensemble Kalman Filter and Covariance Localization
,”
J. Pet. Sci. Eng.
,
146
, pp.
446
456
.
34.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Recursive Update of Channel Information for Reliable History Matching of Channel Reservoirs Using EnKF With DCT
,”
J. Pet. Sci. Eng.
,
154
, pp.
19
37
.
35.
Jo
,
H.
,
Jung
,
H.
,
Ahn
,
J.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
History Matching of Channel Reservoirs Using Ensemble Kalman Filter With Continuous Update of Channel Information
,”
Energy Explor. Exploit.
,
35
(
1
), pp.
3
23
.
36.
Yang
,
H.
,
Kim
,
J.
, and
Choe
,
J.
,
2017
, “
Field Development Optimization in Mature Oil Reservoirs Using a Hybrid Algorithm
,”
J. Pet. Sci. Eng.
,
156
, pp.
41
50
.
You do not currently have access to this content.