Ultradeep fractured tight sandstone gas reservoir is easy to suffer from severe formation damage during the drill-in process, yet few papers have been published on the corresponding formation damage mechanisms. This paper focuses on a typical ultradeep fractured tight sandstone reservoir in the Tarim Basin, China. Fluid sensitivity damage, phase trapping damage, and the formation damage induced by oil-based drill-in fluids were evaluated by a serious of modified experimental methods. As a supplement, the rock physics and surface property were analyzed deeply. Results showed that severe fluid sensitivity damage occurred with a decrease in fluid salinity (critical value: 3/4 formation water salinity (FWS)) and an increase in fluid pH value (critical value: pH = 7.5). The change in water film thickness, the enhancement of hydrophilia, particle detachment, and dissolution of quartz/albite under high formation temperature are the main damage mechanisms. Abnormal low water saturation, mixed wettability, abundant clay minerals, and complex pore structures are contributing to the severe phase trapping damage. The dynamic damage rate of oil-based drill-in fluids is 60.01%, and inadequate loading capacity is the main trigger of lost circulation. Finally, a formation damage control strategy was proposed, and a field test proved its feasibility.

References

References
1.
Holditch
,
S. A.
,
2003
, “
The Increasing Role of Unconventional Reservoirs in the Future of the Oil and Gas Business
,”
J. Pet. Technol.
,
55
(
11
), pp.
34
79
.
2.
Wang
,
H.
,
Ran
,
Q.
, and
Liao
,
X.
,
2017
, “
Pressure Transient Responses Study on the Hydraulic Volume Fracturing Vertical Well in Stress-Sensitive Tight Hydrocarbon Reservoirs
,”
Int. J. Hydrogen. Energy
,
42
(
29
), pp.
18343
18349
.
3.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
4.
Holditch
,
S. A.
,
2006
, “
Tight Gas Sands
,”
J. Pet. Technol.
,
58
(
6
), pp.
86
93
.
5.
Zou
,
C.
,
Zhu
,
R.
,
Liu
,
K.
,
Su
,
L.
,
Bai
,
B.
,
Zhang
,
X.
,
Yuan
,
X.
, and
Wang
,
J.
,
2012
, “
Tight Gas Sandstone Reservoirs in China: Characteristics and Recognition Criteria
,”
J. Pet. Sci. Eng.
,
88
, pp.
82
91
.
6.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
7.
Dyman
,
T.
,
Crovelli
,
R.
,
Bartberger
,
C.
, and
Takahashi
,
K.
,
2002
, “
Worldwide Estimates of Deep Natural Gas Resources Based on the U.S. Geological Survey World Petroleum Assessment 2000
,”
Nat. Resour. Res.
,
11
(
3
), pp.
207
218
.
8.
Wang
,
J.
,
Zhang
,
R.
, and
Zhang
,
H.
,
2016
, “
Ultra-Deep Fractured Tight Sandstone Gas Reservoirs: Characteristics and Quantitative Evaluation of Fractures in the Lower Cretaceous, Keshen Gas Field Tarim Basin, China
,”
AAPG/SEG International Conference and Exhibition
, Cancun, Mexico, Sept. 6–9, Paper No. 90260.
9.
Lai
,
J.
,
Wang
,
G.
,
Cao
,
J.
,
Xiao
,
C.
,
Wang
,
S.
,
Pang
,
X.
,
Dai
,
Q.
,
He
,
Z.
,
Fan
,
X.
,
Yang
,
L.
, and
Qin
,
Z.
,
2018
, “
Investigation of Pore Structure and Petrophysical Property in Tight Sandstones
,”
Mar. Pet. Geol.
,
91
, pp.
179
189
.
10.
Yue
,
D.
,
Wu
,
S.
,
Xu
,
Z.
,
Xiong
,
L.
,
Chen
,
D.
,
Ji
,
Y.
, and
Zhou
,
Y.
,
2018
, “
Reservoir Quality, Natural Fractures, and Gas Productivity of Upper Triassic Xujiahe Tight Gas Sandstones in Western Sichuan Basin, China
,”
Mar. Pet. Geol.
,
89
, pp.
370
386
.
11.
Tian
,
L.
,
Feng
,
B.
,
Zheng
,
S.
,
Gu
,
D.
,
Ren
,
X.
, and
Yang
,
D.
,
2019
, “
Performance Evaluation of Gas Production With Consideration of Dynamic Capillary Pressure in Tight Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022902
.
12.
Ding
,
Y.
, and
Renard
,
G.
,
2005
, “
Evaluation of Horizontal Well Performance After Drilling-Induced Formation Damage
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
257
263
.
13.
Adewole
,
J. K.
, and
Najimu
,
M. O.
,
2018
, “
A Study on the Effects of Date Pit-Based Additive on the Performance of Water-Based Drilling Fluid
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052903
.
14.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
15.
Penny
,
G.
,
Pursley
,
J. T.
, and
Holcomb
,
D.
,
2005
, “
Microemulsion Additives Enable Optimized Formation Damage Repair and Prevention
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
233
239
.
16.
Shi
,
X.
,
Prodanović
,
M.
,
Holder
,
J.
,
Gray
,
K.
, and
DiCarlo
,
D.
,
2013
, “
Coupled Solid and Fluid Mechanics Modeling of Formation Damage Near Wellbore
,”
J. Pet. Sci. Eng.
,
112
, pp.
88
96
.
17.
Mohsenzadeh
,
A.
,
Al-Wahaibi
,
Y.
,
Al-Hajri
,
R.
,
Jibril
,
B.
,
Joshi
,
S.
, and
Pracejus
,
B.
,
2015
, “
Investigation of Formation Damage by Deep Eutectic Solvents as New EOR Agents
,”
J. Pet. Sci. Eng.
,
129
, pp.
130
136
.
18.
He
,
Y.
,
Cheng
,
S.
,
Rui
,
Z.
,
Qin
,
J.
,
Fu
,
L.
,
Shi
,
J.
,
Wang
,
Y.
,
Li
,
D.
,
Patil
,
S.
,
Yu
,
H.
, and
Lu
,
J.
,
2018
, “
An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells With Non-Uniform Hydraulic Fracture Properties
,”
Energies
,
11
(
2
), p.
393
.
19.
Li
,
X.
,
Yan
,
X.
, and
Kang
,
Y.
,
2017
, “
Investigation of Drill-in Fluids Damage and Its Impact on Wellbore Stability in Longmaxi Shale Reservoir
,”
J. Pet. Sci. Eng.
,
159
, pp.
702
709
.
20.
Zhao
,
X.
,
Qiu
,
Z.
,
Wang
,
M.
,
Huang
,
W.
, and
Zhang
,
S.
,
2018
, “
Performance Evaluation of a Highly Inhibitive Water-Based Drilling Fluid for Ultralow Temperature Wells
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012906
.
21.
Xu
,
Z.
,
Li
,
Z.
,
Wang
,
C.
, and
Adenutsi
,
C. D.
,
2016
, “
Experimental Study on Microscopic Formation Damage of Low Permeability Reservoir Caused by HPG Fracturing Fluid
,”
J. Nat. Gas. Sci. Eng.
,
36
, pp.
486
495
.
22.
Guo
,
T.
,
Gong
,
F.
,
Lin
,
X.
,
Lin
,
Q.
, and
Wang
,
X.
,
2018
, “
Experimental Investigation on Damage Mechanism of Guar Gum Fracturing Fluid to Low-Permeability Reservoir Based on Nuclear Magnetic Resonance
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072906
.
23.
Civan
,
F.
,
2010
, “
Non-Isothermal Permeability Impairment by Fines Migration and Deposition in Porous Media Including Dispersive Transport
,”
Transp. Porous. Media
,
85
(
1
), pp.
233
258
.
24.
Bennion
,
D. B.
, and
Thomas
,
F. B.
,
2005
, “
Formation Damage Issues Impacting the Productivity of Low Permeability, Low Initial Water Saturation Gas Producing Formations
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
240
247
.
25.
Abaa
,
K.
,
Ityokumbul
,
M. T.
, and
Adewumi
,
M.
,
2017
, “
Effect of Acoustic Stimulation on Aqueous Phase Trapping in Low-Permeability Sandstones
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062905
.
26.
Zhu
,
J.
,
Li
,
L.
,
Li
,
L.
,
Zhang
,
Z.
,
Cheng
,
R.
,
Zhang
,
J.
,
Liu
,
X.
, and
Li
,
J.
,
2015
, “
Application of UDM-2 Drilling Fluid Technology in the Development of Upper-Deep Oil and Gas Resources in Tarim Basin
,”
SPE Asia Pacific Unconventional Resources Conference and Exhibition
, Brisbane, Australia, Nov. 9–11, SPE Paper No.
SPE-176933-MS
.
27.
Ahmed Lashari
,
A.
,
Rehman
,
K.
,
Hussain
,
F.
,
Bahrami
,
H.
,
Shuker
,
M. T.
, and
Kumar
,
S.
,
2013
, “
Minimizing Phase Trapping Damage Using Malaysian Diesel Oil
,”
SPE/IADC Middle East Drilling Technology Conference and Exhibition
, Abu Dhabi, United Arab Emirates, Oct. 7–9, SPE Paper No.
SPE-166805-MS
.
28.
Bahrami
,
H.
,
Rezaee
,
R.
,
Saeedi
,
A.
,
Murikhan
,
G.
,
Bahrami
,
H.
,
Saeedi
,
A.
, and
Murikhan
,
G.
,
2012
, “
Phase Trapping Damage in Use of Water-Based and Oil-Based Drilling Fluids in Tight Gas Reservoirs
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
, Perth, Australia, Oct. 22–24, SPE Paper No.
SPE-154648-MS
.
29.
Suri, A.
, and
Sharma, M. M.
, 2004, “
Strategies for Sizing Particles in Drilling and Completion Fluid
,”
SPE J.
,
9
(1), pp. 13–23.
30.
Al-Ansari
,
A.
,
Abuhamed
,
A. M.
,
Abahusain
,
A.
,
Pino
,
R.
,
Bialy
,
M. E.
, and
Zoghbi
,
B.
,
2016
, “
Enhance Drilling Performance Using an Optimized Mud Fluid System Through Extensive Laboratory Testing
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
, Dammam, Saudi Arabia, Apr. 25–28, SPE Paper No.
SPE-182741-MS
.
31.
Kang
,
Y.
,
Xu
,
C.
,
You
,
L.
,
Yu
,
H.
, and
Zhang
,
B.
,
2014
, “
Comprehensive Evaluation of Formation Damage Induced by Working Fluid Loss in Fractured Tight Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
18
, pp.
353
359
.
32.
Yang
,
X.
,
Huang
,
Y.
,
Liu
,
J.
,
Xian
,
C.
,
Qiu
,
K.
,
Teng
,
Q.
,
Gu
,
X.
,
Zhao
,
M.
,
Pan
,
Y.
, and
Wang
,
N.
,
2016
, “
Understanding Production Mechanism to Optimise Well Stimulation by Production Analysis in Keshen HPHT and Natural Fractured Tight Gas Reservoir
,”
SPE Asia Pacific Hydraulic Fracturing Conference
, Beijing, China, Aug. 24–26, SPE Paper No.
SPE-181817-MS
.
33.
Jaeger
,
J. C.
,
Cook
,
N. G.
, and
Zimmerman
,
R.
,
2009
,
Fundamentals of Rock Mechanics
, Wiley, Oxford, UK.
34.
Huang
,
W.
,
Lei
,
M.
,
Qiu
,
Z.
,
Leong
,
Y.-K.
,
Zhong
,
H.
, and
Zhang
,
S.
,
2015
, “
Damage Mechanism and Protection Measures of a Coalbed Methane Reservoir in the Zhengzhuang Block
,”
J. Nat. Gas. Sci. Eng.
,
26
, pp.
683
694
.
35.
You
,
L.
, and
Kang
,
Y.
,
2009
, “
Integrated Evaluation of Water Phase Trapping Damage Potential in Tight Gas Reservoirs
,”
Eighth European Formation Damage Conference
, The Hague, The Netherlands, May 27–29, SPE Paper No.
SPE-122034-MS
.
36.
Tang
,
Y.
,
Yang
,
R.
,
Du
,
Z.
, and
Zeng
,
F.
,
2015
, “
Experimental Study of Formation Damage Caused by Complete Water Vaporization and Salt Precipitation in Sandstone Reservoirs
,”
Transp. Porous. Media
,
107
(
1
), pp.
205
218
.
37.
Zeng
,
L.
,
Wang
,
L.
,
Xu
,
H.
,
Jiao
,
Y.
,
Cui
,
S.
,
Han
,
H.
, and
Zhang
,
B.
,
2010
, “
The Oil and Gas Industry Standard of the People's Republic of China: Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction
,” Petroleum Industry Press, Beijing, China, Standard No. SY/T5163–2010.
38.
Gao
,
Z.
, and
Hu
,
Q.
,
2013
, “
Estimating Permeability Using Median Pore-Throat Radius Obtained From Mercury Intrusion Porosimetry
,”
J. Geophys. Eng.
,
10
(
2
), p.
025014
.
39.
Qutob
,
H.
,
2004
, “
Underbalanced Drilling; Remedy for Formation Damage, Lost Circulation, & Other Related Conventional Drilling Problems
,”
Abu Dhabi International Conference and Exhibition
, Abu Dhabi, United Arab Emirates, Oct. 10–13, SPE Paper No.
SPE-88698-MS
.
40.
Derjaguin
,
B.
,
Churaev
,
N.
, and
Muller
,
V.
,
1987
, “
Wetting Films
,”
Surface Forces
,
Springer
, Boston, MA, pp.
327
367
.
41.
Civan
,
F.
,
2007
, “
Temperature Effect on Power for Particle Detachment From Pore Wall Described by an Arrhenius-Type Equation
,”
Transp. Porous. Media
,
67
(
2
), pp.
329
334
.
42.
Schembre
,
J.
, and
Kovscek
,
A.
,
2005
, “
Mechanism of Formation Damage at Elevated Temperature
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
171
180
.
43.
Fang
,
W.
,
Jiang
,
H.
,
Li
,
J.
,
Li
,
W.
,
Li
,
J.
,
Zhao
,
L.
, and
Feng
,
X.
,
2016
, “
A New Experimental Methodology to Investigate Formation Damage in Clay-Bearing Reservoirs
,”
J. Pet. Sci. Eng.
,
143
, pp.
226
234
.
44.
Nemecz
,
E.
,
1981
,
Clay Minerals
,
Akadémiai Kiadó
, Budapest, Hungary.
45.
Dove
,
P. M.
,
1994
, “
The Dissolution Kinetics of Quartz in Sodium Chloride Solutions at 25 Degrees to 300 Degrees C
,”
Am. J. Sci.
,
294
(
6
), pp.
665
712
.
46.
Roychaudhuri
,
B.
,
Tsotsis
,
T. T.
, and
Jessen
,
K.
,
2013
, “
An Experimental Investigation of Spontaneous Imbibition in Gas Shales
,”
J. Pet. Sci. Eng.
,
111
, pp.
87
97
.
47.
Fang
,
J.
,
Guo
,
P.
,
Xiao
,
X.
,
Du
,
J.
,
Dong
,
C.
,
Xiong
,
Y.
, and
Long
,
F.
,
2015
, “
Gas-Water Relative Permeability Measurement of High Temperature and High Pressure Tight Gas Reservoirs
,”
Pet. Explor. Dev.
,
42
(
1
), pp.
92
96
.
48.
Karpyn
,
Z.
,
Halleck
,
P.
, and
Grader
,
A.
,
2009
, “
An Experimental Study of Spontaneous Imbibition in Fractured Sandstone With Contrasting Sedimentary Layers
,”
J. Pet. Sci. Eng.
,
67
(
1–2
), pp.
48
56
.
49.
Xu
,
C.
,
You
,
Z.
,
Kn
,
Y.
, and
You
,
L.
,
2018
, “
Stochastic Modelling of Particulate Suspension Transport for Formation Damage Prediction in Fractured Tight Reservoir
,”
Fuel
,
221
, pp.
476
490
.
50.
Xu
,
C.
,
Kang
,
Y.
,
You
,
L.
, and
You
,
Z.
,
2017
, “
Lost-Circulation Control for Formation-Damage Prevention in Naturally Fractured Reservoir: Mathematical Model and Experimental Study
,”
SPE J.
,
22
(
5
), pp.
1654
1670
.
You do not currently have access to this content.