Over the past few decades, due to the special features (i.e., easily produced, large-surface-area-to-volume ratio, and engineered particles with designed surface properties), nanoparticles have not only attracted great attentions from the oil and gas industry but also had various applications from drilling and completion, reservoir characterization, to enhanced oil recovery (EOR). As sensors or EOR agents, thus, fate and behavior of nanoparticles in porous media are essential and need to be investigated thoroughly. Nevertheless, most of the published review papers focus on particle transport in saturated porous media, and all of them are about steady-state flow conditions. So far, no attempts have been extended to systematically review current knowledge about nanoparticle transport in porous media with single-phase and two-phase flow systems under both steady-state and unsteady-state conditions. Accordingly, this review will discuss nanoparticle transport phenomena in porous media with its focus on the filtration mechanisms, the underlying interaction forces, and factors dominating nanoparticle transport behavior in porous media. Finally, mathematical models used to describe nanoparticle transport in porous media for both single-phase flow and two-phase flow under steady-state and transient flow conditions will be summarized, respectively.

References

References
1.
Lead
,
J. R.
, and
Smith
,
E.
,
2009
,
Environmental and Human Health Impacts of Nanotechnology
,
Wiley
,
Chichester, UK
.
2.
Fakoya
,
M. F.
, and
Shah
,
S. N.
,
2017
, “
Emergence of Nanotechnology in the Oil and Gas Industry: Emphasis on the Application of Silica Nanoparticles
,”
Petroleum
,
3
(
4
), pp.
391
405
.
3.
Motamedi
,
P.
,
Bargozin
,
H.
, and
Pourafshary
,
P.
,
2018
, “
Management of Implementation of Nanotechnology in Upstream Oil Industry: An Analytic Hierarchy Process Analysis
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052908
.
4.
Chen
,
L.
,
Sabatini
,
D. A.
, and
Kibbey
,
T. C.
,
2008
, “
Role of the Air-Water Interface in the Retention of TiO2 Nanoparticles in Porous Media During Primary Drainage
,”
Environ. Sci. Technol.
,
42
(
6
), pp.
1916
1921
.
5.
Klaine
,
S. J.
,
Alvarez
,
P. J.
,
Batley
,
G. E.
,
Fernandes
,
T. F.
,
Handy
,
R. D.
,
Lyon
,
D. Y.
,
Mahendra
,
S.
,
McLaughlin
,
M. J.
, and
Lead
,
J. R.
,
2008
, “
Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects
,”
Environ. Toxicol. Chem.
,
27
(
9
), pp.
1825
1851
.
6.
El-Amin
,
M. F.
,
Salama
,
A.
, and
Sun
,
S.
,
2012
, “
Modeling and Simulation of Nanoparticle Transport in a Two-Phase Flow in Porous Media
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
, Noordwijk, The Netherlands, June 12–14, SPE Paper No.
SPE-154972-MS
.
7.
Zhang
,
T.
,
2012
, “
Modeling of Nanoparticle Transport in Porous Media
,”
Ph.D. dissertation
, University of Texas at Austin, Austin, TX.https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2012-08-6044
8.
Li
,
L.
,
Yuan
,
X.
,
Sun
,
J.
,
Xu
,
X.
,
Li
,
S.
, and
Wang
,
L.
,
2013
, “
Vital Role of Nanotechnology and Nanomaterials in the Field of Oilfield Chemistry
,”
International Petroleum Technology Conference
, Beijing, China, Mar. 26–28, Paper No.
IPTC-16401-MS
.
9.
Odedele
,
T. O.
,
2014
, “
Synthesis and Applications of Nanomaterials in Enhanced Oil Recovery
,”
SPE Nigeria Annual International Conference and Exhibition
, Lagos, Nigeria, Aug. 5–7, SPE Paper No.
SPE 172448
.
10.
Contreras
,
O.
,
Alsaba
,
M.
,
Hareland
,
G.
,
Husein
,
M.
, and
Nygaard
,
R.
,
2016
, “
Effect on Fracture Pressure by Adding Iron-Based and Calcium-Based Nanoparticles to a Nonaqueous Drilling Fluid for Permeable Formations
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032906
.
11.
Pradeep
,
T.
,
2012
,
A Textbook of Nanoscience and Nanotechnology
,
Tata McGraw-Hill
,
New Delhi, India
.
12.
Bagheri
,
S.
,
Amiri
,
I. S.
,
Yousefi
,
A. T.
, and
Hamid
,
S. B. A.
,
2016
,
Nanocomposites in Electrochemical Sensors
,
CRC Press
,
Delft, The Netherlands
.
13.
Amanullah
,
M.
, and
Al-Tahini
,
A. M.
,
2009
, “
Nano-Technology—Its Significance in Smart Fluid Development for Oil and Gas Field Application
,”
SPE Saudi Arabia Section Technical Symposium and Exhibition
, AlKhobar, Saudi Arabia, May 9–11, SPE Paper No.
SPE 126102
.
14.
Abtahi
,
S. M. H.
,
2013
, “
Synthesis and Characterization of Metallic Nanoparticles With Photoactivated Surface Chemistries
,”
Ph.D. dissertation
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/78081
15.
Hassani
,
A. H.
, and
Ghazanfari
,
M. H.
,
2018
, “
Impact of Hydrophobicity of SiO2 Nanoparticles on Enhancing Properties of Colloidal Gas Aphron Fluids: An Experimental Study
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012901
.
16.
Prabu
,
A.
,
2018
, “
Engine Characteristic Studies by Application of Antioxidants and Nanoparticles as Additives in Biodiesel Diesel Blends
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082203
.
17.
Neouze
,
M. A.
, and
Schubert
,
U.
,
2008
, “
Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands
,”
Monatsh. Chem.-Chem. Mon.
,
139
(
3
), pp.
183
195
.
18.
López-Serrano
,
A.
,
Olivas
,
R. M.
,
Landaluze
,
J. S.
, and
Cámara
,
C.
,
2014
, “
Nanoparticles: A Global Vision. Characterization, Separation, and Quantification Methods. Potential Environmental and Health Impact
,”
Anal. Methods
,
6
(
1
), pp.
38
56
.
19.
Zakaria
,
M.
,
Husein
,
M. M.
, and
Harland
,
G.
,
2012
, “
Novel Nanoparticle-Based Drilling Fluid With Improved Characteristics
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
, Noordwijk, The Netherlands, June 12–14, SPE Paper No.
SPE 156992
.
20.
Contreras
,
O.
,
Hareland
,
G.
,
Husein
,
M.
,
Nygaard
,
R.
, and
Al-Saba
,
M.
,
2014
, “
Application of in-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage
,”
SPE International Symposium and Exhibition on Formation Damage Control
, Lafayette, LA, Feb. 26–28, SPE Paper No.
SPE 168116
.
21.
Huang
,
T.
,
Crews
,
J. B.
, and
Willingham
,
J. R.
,
2008
, “
Using Nanoparticle Technology to Control Fine Migration
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Sept. 21–24, SPE Paper No.
SPE 115384
.
22.
Ogolo
,
N. A.
,
Olafuyi
,
O. A.
, and
Onyekonwu
,
M. O.
,
2013
, “
Impact of Hydrocarbon on the Performance of Nanoparticles in Control of Fines Migration
,”
SPE Nigeria Annual International Conference and Exhibition
, Lagos, Nigeria, Aug. 5–7, SPE Paper No.
SPE 167503
.
23.
Avendano
,
C.
,
Lee
,
S. S.
,
Escalera
,
G.
, and
Colvin
,
V.
,
2012
, “
Magnetic Characterization of Nanoparticles Designed for Use as Contrast Agents for Downhole Measurements
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
, Noordwijk, The Netherlands, June 12–14, SPE Paper No.
SPE 157123
.
24.
Al-Shehri
,
A. A.
,
Ellis
,
E. S.
,
Servin
,
J. M. F.
,
Kosynkin
,
D. V.
,
Kanj
,
M. Y.
, and
Schmidt
,
H. K.
,
2013
, “
Illuminating the Reservoir: Magnetic Nanomappers
,”
SPE Middle East Oil and Gas Show and Exhibition
, Manama, Bahrain, Mar. 10–13, SPE Paper No.
SPE 164461
.
25.
Karimi
,
A.
,
Fakhroueian
,
Z.
,
Bahramian
,
A.
,
Pour Khiabani
,
N.
,
Darabad
,
J. B.
,
Azin
,
R.
, and
Arya
,
S.
,
2012
, “
Wettability Alteration in Carbonates Using Zirconium Oxide Nanofluids: EOR Implications
,”
Energy Fuels
,
26
(
2
), pp.
1028
1036
.
26.
Ehtesabi
,
H.
,
Ahadian
,
M. M.
,
Taghikhani
,
V.
, and
Ghazanfari
,
M. H.
,
2013
, “
Enhanced Heavy Oil Recovery in Sandstone Cores Using TiO2 Nanofluids
,”
Energy Fuels
,
28
(
1
), pp.
423
430
.
27.
Giraldo
,
J.
,
Benjumea
,
P.
,
Lopera
,
S.
,
Cortés
,
F. B.
, and
Ruiz
,
M. A.
,
2013
, “
Wettability Alteration of Sandstone Cores by Alumina-Based Nanofluids
,”
Energy Fuels
,
27
(
7
), pp.
3659
3665
.
28.
Safari
,
M.
,
2014
, “
Variations in Wettability Caused by Nanoparticles
,”
Pet. Sci. Technol.
,
32
(
12
), pp.
1505
1511
.
29.
Emadi
,
A.
,
Jamiolahmady
,
M.
,
Sohrabi
,
M.
, and
Irland
,
S.
,
2012
, “
Visualization of Oil Recovery by CO2-Foam Injection; Effect of Oil Viscosity and Gas Type
,”
SPE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 14–18, SPE Paper No.
SPE 152996
.
30.
Xu
,
X.
,
Saeedi
,
A.
, and
Liu
,
K.
,
2017
, “
Experimental Study on a Novel Foaming Formula for CO2 Foam Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022902
.
31.
Espinoza
,
D. A.
,
Caldelas
,
F. M.
,
Johnston
,
K. P.
,
Bryant
,
S. L.
, and
Huh
,
C.
,
2010
, “
Nanoparticle-Stabilized Supercritical CO2 Foams for Potential Mobility Control Applications
,”
SPE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 24–28, SPE Paper No.
SPE 129925
.
32.
Nguyen
,
P.
,
Fadaei
,
H.
, and
Sinton
,
D.
,
2014
, “
Pore-Scale Assessment of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery
,”
Energy Fuels
,
28
(
10
), pp.
6221
6227
.
33.
Singh
,
R.
, and
Mohanty
,
K. K.
,
2016
, “
Foams Stabilized by In-Situ Surface-Activated Nanoparticles in Bulk and Porous Media
,”
SPE J.
,
21
(
1
), pp.
121
130
.
34.
Zhang
,
L.
,
Kang
,
J.
,
Zhang
,
Y.
,
Zhang
,
P.
,
Ren
,
S.
,
Khataniar
,
S.
, and
Guo
,
X.
,
2018
, “
Experimental Investigation of Amine-Surfactant CO2 Foam Stability Enhanced by Silica Nanoparticles
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112902
.
35.
Greff
,
J.
, and
Babadagli
,
T.
,
2011
, “
Catalytic Effects of Nano-Size Metal Ions in Breaking Asphaltene Molecules During Thermal Recovery of Heavy-Oil
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Oct. 30–Nov. 2, SPE Paper No.
SPE 146604
.
36.
Nassar
,
N. N.
,
Hassan
,
A.
, and
Pereira-Almao
,
P.
,
2012
, “
Thermogravimetric Studies on Catalytic Effect of Metal Oxide Nanoparticles on Asphaltene Pyrolysis Under Inert Conditions
,”
J. Therm. Anal. Calorim.
,
110
(
3
), pp.
1327
1332
.
37.
Yang
,
Z.
,
Liu
,
X.
,
Li
,
X.
,
Zhao
,
M.
,
Zhang
,
Z.
, and
Su
,
C.
,
2014
, “
Preparation of Silica Supported Nanoscale Zero Valence Iron and Its Feasibility in Viscosity Reduction of Heavy Oil
,”
Micro Nano Lett.
,
9
(
5
), pp.
355
358
.
38.
Sun
,
X.
,
Zhang
,
Y.
,
Chen
,
G.
, and
Gai
,
Z.
,
2017
, “
Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress
,”
Energies
,
10
(
3
), p.
345
.
39.
Ding
,
Y.
,
Zheng
,
S.
,
Meng
,
X.
, and
Yang
,
D.
,
2018
, “
Low Salinity Hot Water Injection With Addition of Nanoparticles for Enhancing Heavy Oil Recovery Under Reservoir Conditions
,”
SPE Western Regional Meeting
, Garden Grove, CA, Apr. 22–26, SPE Paper No.
SPE 190132
.
40.
Miranda
,
C. R.
,
Lara
,
L. S. D.
, and
Tonetto
,
B. C.
,
2012
, “
Stability and Mobility of Functionalized Silica Nanoparticles for Enhanced Oil Recovery Applications
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
, Noordwijk, The Netherlands, June 12–14, SPE Paper No.
SPE 157033
.
41.
Kamal
,
M. S.
,
Adewunmi
,
A. A.
,
Sultan
,
A. S.
,
Al-Hamad
,
M. F.
, and
Mehmood
,
U.
,
2017
, “
Recent Advances in Nanoparticles Enhanced Oil Recovery: Rheology, Interfacial Tension, Oil Recovery, and Wettability Alteration
,”
J. Nanomater.
,
2017
, p. 2473175.
42.
Lau
,
H. C.
,
Yu
,
M.
, and
Nguyen
,
Q. P.
,
2017
, “
Nanotechnology for Oilfield Applications: Challenges and Impact
,”
J. Pet. Sci. Eng.
,
157
, pp.
1160
1169
.
43.
Arab
,
D.
,
Kantzas
,
A.
, and
Bryant
,
S. L.
,
2018
, “
Nanoparticle Stabilized Oil in Water Emulsions: A Critical Review
,”
J. Pet. Sci. Eng.
,
163
, pp.
217
242
.
44.
Wang
,
M.
,
Gao
,
B.
, and
Tang
,
D.
,
2016
, “
Review of Key Factors Controlling Engineered Nanoparticle Transport in Porous Media
,”
J. Hazard. Mater.
,
318
, pp.
233
246
.
45.
Babakhani
,
P.
,
Bridge
,
J.
,
Doong
,
R. A.
, and
Phenrat
,
T.
,
2017
, “
Continuum-Based Models and Concepts for the Transport of Nanoparticles in Saturated Porous Media: A State-of-the-Science Review
,”
Adv. Colloid Interface Sci.
,
246
, pp.
75
104
.
46.
Hotze
,
E. M.
,
Phenrat
,
T.
, and
Lowry
,
G. V.
,
2010
, “
Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment
,”
J. Environ. Qual.
,
39
(
6
), pp.
1909
1924
.
47.
Petosa
,
A. R.
,
Jaisi
,
D. P.
,
Quevedo
,
I. R.
,
Elimelech
,
M.
, and
Tufenkji
,
N.
,
2010
, “
Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions
,”
Environ. Sci. Technol.
,
44
(
17
), pp.
6532
6549
.
48.
Molnar
,
I. L.
,
Johnson
,
W. P.
,
Gerhard
,
J. I.
,
Willson
,
C. S.
, and
O'Carroll
,
D. M.
,
2015
, “
Predicting Colloid Transport Through Saturated Porous Media: A Critical Review
,”
Water Resour. Res.
,
51
(
9
), pp.
6804
6845
.
49.
DeNovio
,
N. M.
,
Saiers
,
J. E.
, and
Ryan
,
J. N.
,
2004
, “
Colloid Movement in Unsaturated Porous Media: Recent Advances and Future Directions
,”
Vadose Zone J.
,
3
(
2
), pp.
338
351
.http://www.geol.lsu.edu/blanford/NATORBF/6%20Hydraulics%20of%20Clogging%20of%20RBF%20Systems/Real%206/DeNovio%20et%20al_Vadose_2004.PDF
50.
Grasso
,
D.
,
Subramaniam
,
K.
,
Butkus
,
M.
,
Strevett
,
K.
, and
Bergendahl
,
J.
,
2002
, “
A Review of Non-DLVO Interactions in Environmental Colloidal Systems
,”
Rev. Environ. Sci. Biotechnol.
,
1
(
1
), pp.
17
38
.
51.
Bradford
,
S. A.
, and
Torkzaban
,
S.
,
2008
, “
Colloid Transport and Retention in Unsaturated Porous Media: A Review of Interface-, Collector-, and Pore-Scale Processes and Models
,”
Vadose Zone J.
,
7
(
2
), pp.
667
681
.
52.
McDowell-Boyer
,
L. M.
,
Hunt
,
J. R.
, and
Sitar
,
N.
,
1986
, “
Particle Transport Through Porous Media
,”
Water Resour. Res.
,
22
(
13
), pp.
1901
1921
.
53.
Herzig
,
J. P.
,
Leclerc
,
D. M.
, and
Goff
,
P. L.
,
1970
, “
Flow of Suspensions Through Porous Media-Application to Deep Filtration
,”
Ind. Eng. Chem.
,
62
(
5
), pp.
8
35
.
54.
Bradford
,
S. A.
,
Yates
,
S. R.
,
Bettahar
,
M.
, and
Simunek
,
J.
,
2002
, “
Physical Factors Affecting the Transport and Fate of Colloids in Saturated Porous Media
,”
Water Resour. Res.
,
38
(
12
), p. 1327.
55.
Xu
,
S.
,
Gao
,
B.
, and
Saiers
,
J. E.
,
2006
, “
Straining of Colloidal Particles in Saturated Porous Media
,”
Water Resour. Res.
,
42
(
12
), p. W12S16.
56.
Shen
,
C.
,
Huang
,
Y.
,
Li
,
B.
, and
Jin
,
Y.
,
2008
, “
Effects of Solution Chemistry on Straining of Colloids in Porous Media Under Unfavorable Conditions
,”
Water Resour. Res.
,
44
(
5
), p. W05419.
57.
Wang
,
Y.
,
2009
, “
Transport and Retention of Fullerene-Based Nanoparticles in Water-Saturated Porous Media
,”
Ph.D. dissertation
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/29782
58.
Jaisi
,
D. P.
,
Saleh
,
N. B.
,
Blake
,
R. E.
, and
Elimelech
,
M.
,
2008
, “
Transport of Single-Walled Carbon Nanotubes in Porous Media: Filtration Mechanisms and Reversibility
,”
Environ. Sci. Technol.
,
42
(
22
), pp.
8317
8323
.
59.
Wan
,
J.
, and
Tokunaga
,
T. K.
,
1997
, “
Film Straining of Colloids in Unsaturated Porous Media: Conceptual Model and Experimental Testing
,”
Environ. Sci. Technol.
,
31
(
8
), pp.
2413
2420
.
60.
Gao
,
B.
,
Steenhuis
,
T. S.
,
Zevi
,
Y.
,
Morales
,
V. L.
,
Nieber
,
J. L.
,
Richards
,
B. K.
,
McCarthy
,
J. F.
, and
Parlange
,
J.
,
2008
, “
Capillary Retention of Colloids in Unsaturated Porous Media
,”
Water Resour. Res.
,
44
(4), p.
W04504
.
61.
Wan
,
J.
, and
Wilson
,
J. L.
,
1994
, “
Visualization of the Role of the Gas-Water Interface on the Fate and Transport of Colloids in Porous Media
,”
Water Resour. Res.
,
30
(
1
), pp.
11
23
.
62.
Jin
,
Y.
,
Chu
,
Y.
, and
Li
,
Y.
,
2000
, “
Virus Removal and Transport in Saturated and Unsaturated Sand Columns
,”
J. Contam. Hydrol.
,
43
(
2
), pp.
111
128
.
63.
Keller
,
A. A.
, and
Sirivithayapakorn
,
S.
,
2004
, “
Transport of Colloids in Unsaturated Porous Media: Explaining Large-Scale Behavior Based on Pore-Scale Mechanisms
,”
Water Resour. Res.
,
40
(
12
), p. W12403.
64.
Zevi
,
Y.
,
Dathe
,
A.
,
McCarthy
,
J. F.
,
Richards
,
B. K.
, and
Steenhuis
,
T. S.
,
2005
, “
Distribution of Colloid Particles Onto Interfaces in Partially Saturated Sand
,”
Environ. Sci. Technol.
,
39
(
18
), pp.
7055
7064
.
65.
Chen
,
G.
, and
Flury
,
M.
,
2005
, “
Retention of Mineral Colloids in Unsaturated Porous Media as Related to Their Surface Properties
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
256
(
2–3
), pp.
207
216
.
66.
Crist
,
J. T.
,
McCarthy
,
J. F.
,
Zevi
,
Y.
,
Baveye
,
P.
,
Throop
,
J. A.
, and
Steenhuis
,
T. S.
,
2004
, “
Pore-Scale Visualization of Biocolloid Transport and Retention in Partly Saturated Porous Media
,”
Vadose Zone J.
,
3
(
2
), pp.
444
450
.
67.
Crist
,
J. T.
,
Zevi
,
Y.
,
McCarthy
,
J. F.
,
Throop
,
J. A.
, and
Steenhuis
,
T. S.
,
2005
, “
Transport and Retention Mechanisms of Colloids in Partially Saturated Porous Media
,”
Vadose Zone J.
,
4
(
1
), pp.
184
195
.
68.
Zhang
,
W.
,
Morales
,
V. L.
,
Cakmak
,
M. E.
,
Salvucci
,
A. E.
,
Geohring
,
L. D.
,
Hay
,
A. G.
,
Parlange
,
J. Y.
, and
Steenhuis
,
T. S.
,
2010
, “
Colloid Transport and Retention in Unsaturated Porous Media: Effect of Colloid Input Concentration
,”
Environ. Sci. Technol.
,
44
(
13
), pp.
4965
4972
.
69.
Sang
,
W.
,
Morales
,
V. L.
,
Zhang
,
W.
,
Stoof
,
C. R.
,
Gao
,
B.
,
Schatz
,
A. L.
,
Zhang
,
Y.
, and
Steenhuis
,
T. S.
,
2013
, “
Quantification of Colloid Retention and Release by Straining and Energy Minima in Variably Saturated Porous Media
,”
Environ. Sci. Technol.
,
47
(
15
), pp.
8256
8264
.
70.
Zhang
,
Q.
,
Hassanizadeh
,
S. M.
,
Karadimitriou
,
N. K.
,
Raoof
,
A.
,
Liu
,
B.
,
Kleingeld
,
P. J.
, and
Imhof
,
A.
,
2013
, “
Retention and Remobilization of Colloids During Steady-State and Transient Two-Phase Flow
,”
Water Resour. Res.
,
49
(
12
), pp.
8005
8016
.
71.
Xu
,
S.
,
Qi
,
J.
,
Chen
,
X.
,
Lazouskaya
,
V.
,
Zhuang
,
J.
, and
Jin
,
Y.
,
2016
, “
Coupled Effect of Extended DLVO and Capillary Interactions on the Retention and Transport of Colloids Through Unsaturated Porous Media
,”
Sci. Total Environ.
,
573
, pp.
564
572
.
72.
Flury
,
M.
, and
Aramrak
,
S.
,
2017
, “
Role of Air‐Water Interfaces in Colloid Transport in Porous Media: A Review
,”
Water Resour. Res.
,
53
(
7
), pp.
5247
5275
.
73.
Fang
,
J.
,
Xu
,
M.
,
Wang
,
D.
,
Wen
,
B.
, and
Han
,
J.
,
2013
, “
Modeling the Transport of TiO2 Nanoparticle Aggregates in Saturated and Unsaturated Granular Media: Effects of Ionic Strength and pH
,”
Water Res.
,
47
(
3
), pp.
1399
1408
.
74.
Yu
,
H.
,
2012
, “
Transport and Retention of Surface-Modified Nanoparticles in Sedimentary Rocks
,”
Ph.D. dissertation
, University of Texas at Austin, Austin, TX.https://repositories.lib.utexas.edu/handle/2152/22237
75.
Toloni
,
I.
,
Lehmann
,
F.
, and
Ackerer
,
P.
,
2016
, “
Modeling the Effects of Water Content on TiO2 Nanoparticles Transport in Porous Media
,”
J. Contam. Hydrol.
,
191
, pp.
76
87
.
76.
Tian
,
Y.
,
Gao
,
B.
,
Silvera-Batista
,
C.
, and
Ziegler
,
K. J.
,
2010
, “
Transport of Engineered Nanoparticles in Saturated Porous Media
,”
J. Nanopart. Res.
,
12
(
7
), pp.
2371
2380
.
77.
Metin
,
C. O.
,
Baran
,
J. R.
, and
Nguyen
,
Q. P.
,
2012
, “
Adsorption of Surface Functionalized Silica Nanoparticles Onto Mineral Surfaces and Decane/Water Interface
,”
J. Nanopart. Res.
,
14
(
11
), p. 1246.
78.
Sasidharan
,
S.
,
Torkzaban
,
S.
,
Bradford
,
S. A.
,
Dillon
,
P. J.
, and
Cook
,
P. G.
,
2014
, “
Coupled Effects of Hydrodynamic and Solution Chemistry on Long-Term Nanoparticle Transport and Deposition in Saturated Porous Media
,”
Colloids Surf. A: Physicochem. Eng. Aspect
,
457
, pp.
169
179
.
79.
Treumann
,
S.
,
Torkzaban
,
S.
,
Bradford
,
S. A.
,
Visalakshan
,
R. M.
, and
Page
,
D.
,
2014
, “
An Explanation for Differences in the Process of Colloid Adsorption in Batch and Column Studies
,”
J. Contam. Hydrol.
,
164
, pp.
219
229
.
80.
Bayat
,
A. E.
,
Junin
,
R.
,
Derahman
,
M. N.
, and
Samad
,
A. A.
,
2015
, “
TiO2 Nanoparticle Transport and Retention Through Saturated Limestone Porous Media Under Various Ionic Strength Conditions
,”
Chemosphere
,
134
, pp.
7
15
.
81.
Abdelfatah
,
E. R.
,
Kang
,
K.
,
Pournik
,
M.
,
Shiau
,
B.
,
Harwell
,
J.
,
Haroun
,
M. R.
, and
Rahman
,
M. M.
,
2017
, “
Study of Nanoparticle Adsorption and Release in Porous Media Based on the DLVO Theory
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
, Buenos Aires, Argentina, May 18–19, SPE Paper No.
SPE 185484
.
82.
Elimelech
,
M.
,
Gregory
,
J.
,
Jia
,
X.
, and
Williams
,
R. A.
,
1995
,
Particle Deposition and Aggregation: Measurement, Modeling, and Simulation
,
Butterworth-Heinemann
,
Oxford, UK
.
83.
Zhang
,
Q.
,
Hassanizadeh
,
S. M.
,
Liu
,
B.
,
Schijven
,
J. F.
, and
Karadimitriou
,
N. K.
,
2014
, “
Effect of Hydrophobicity on Colloid Transport During Two-Phase Flow in a Micromodel
,”
Water Resour. Res.
,
50
(
10
), pp.
7677
7691
.
84.
Zhang
,
T.
,
Murphy
,
M. J.
,
Yu
,
H.
,
Bagaria
,
H. G.
,
Yoon
,
K. Y.
,
Nielson
,
B. M.
,
Blelawski
,
C. W.
,
Johnston
,
K. P.
,
Huh
,
C.
, and
Bryant
,
S. L.
,
2015
, “
Investigation of Nanoparticle Adsorption During Transport in Porous Media
,”
SPE J.
,
20
(4), pp.
667
677
.
85.
Guzman
,
K. A. D.
,
Finnegan
,
M. P.
, and
Banfield
,
J. F.
,
2006
, “
Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles
,”
Environ. Sci. Technol.
,
40
(
24
), pp.
7688
7693
.
86.
Wang
,
C.
,
Bobba
,
A. D.
,
Attinti
,
R.
,
Shen
,
C.
,
Lazouskaya
,
V.
,
Wang
,
L. P.
, and
Jin
,
Y.
,
2012
, “
Retention and Transport of Silica Nanoparticles in Saturated Porous Media: Effect of Concentration and Particle Size
,”
Environ. Sci. Technol.
,
46
(
13
), pp.
7151
7158
.
87.
Hoek
,
E.
, and
Agarwal
,
G. K.
,
2006
, “
Extended DLVO Interactions Between Spherical Particles and Rough Surfaces
,”
J. Colloid Interface Sci.
,
298
(
1
), pp.
50
58
.
88.
Li
,
K.
, and
Chen
,
Y.
,
2012
, “
Effect of Natural Organic Matter on the Aggregation Kinetics of CeO2 Nanoparticles in KCl and CaCl2 Solutions: Measurements and Modeling
,”
J. Hazard. Mater.
,
209
, pp.
264
270
.
89.
Bradford
,
S. A.
,
Torkzaban
,
S.
,
Leij
,
F.
, and
Simunek
,
J.
,
2015
, “
Equilibrium and Kinetic Models for Colloid Release Under Transient Solution Chemistry Conditions
,”
J. Contam. Hydrol.
,
181
, pp.
141
152
.
90.
Sirivithayapakorn
,
S.
, and
Keller
,
A.
,
2003
, “
Transport of Colloids in Unsaturated Porous Media: A Pore-Scale Observation of Processes During the Dissolution of Air-Water Interface
,”
Water Resour. Res.
,
39
(
12
), p.
1346
.
91.
Gao
,
B.
,
Saiers
,
J. E.
, and
Ryan
,
J.
,
2006
, “
Pore-Scale Mechanisms of Colloid Deposition and Mobilization During Steady and Transient Flow Through Unsaturated Granular Media
,”
Water Resour. Res.
,
42
, p.
W01410
.
92.
Sharma
,
P.
,
Flury
,
M.
, and
Zhou
,
J.
,
2008
, “
Detachment of Colloids From a Solid Surface by a Moving Air-Water Interface
,”
J. Colloid Interface Sci.
,
326
(
1
), pp.
143
150
.
93.
Shang
,
J.
,
Flury
,
M.
, and
Deng
,
Y.
,
2009
, “
Force Measurements Between Particles and the Air-Water Interface: Implications for Particle Mobilization in Unsaturated Porous Media
,”
Water Resour. Res.
,
45
, p.
W06420
.
94.
Aramrak
,
S.
,
Flury
,
M.
, and
Harsh
,
J. B.
,
2011
, “
Detachment of Deposited Colloids by Advancing and Receding Air-Water Interfaces
,”
Langmuir
,
27
(
16
), pp.
9985
9993
.
95.
Lazouskaya
,
V.
,
Jin
,
Y.
, and
Or
,
D.
,
2006
, “
Interfacial Interactions and Colloid Retention Under Steady Flows in a Capillary Channel
,”
J. Colloid Interface Sci.
,
303
(
1
), pp.
171
184
.
96.
Zevi
,
Y.
,
Gao
,
B.
,
Zhang
,
W.
,
Morales
,
V. L.
,
Ekrem Cakmak
,
M.
,
Medrano
,
E. A.
,
Sang
,
W.
, and
Steenhuis
,
T. S.
,
2012
, “
Colloid Retention at the Meniscus-Wall Contact Line in an Open Microchannel
,”
Water Res.
,
46
(
2
), pp.
295
306
.
97.
Ray
,
P. C.
,
2012
,
Colloids: Classification, Properties, and Applications
,
Nova Science Publishers
,
Hauppauge, NY
.
98.
Hendraningrat
,
L.
,
Li
,
S.
, and
Torsæter
,
O.
,
2012
, “
A Glass Micromodel Experimental Study of Hydrophilic Nanoparticles Retention for EOR Project
,”
SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition
, Moscow, Russia, Oct. 16–18, SPE Paper No.
SPE 159161
.
99.
Li
,
S.
,
Hendraningrat
,
L.
, and
Torsæter
,
O.
,
2013
, “
Improved Oil Recovery by Hydrophilic Silica Nanoparticles Suspension: 2-Phase Flow Experimental Studies
,”
International Petroleum Technology Conference
, Beijing, China, Mar. 26–28, SPE Paper No.
IPTC 16707
.
100.
Van Bramer
,
W. C.
,
2014
, “
Nanoparticle Dispersion Flow for Enhanced Oil Recovery Using Micromodels
,”
M.Sc. thesis
, University of Texas at Austin, Austin, TX.https://repositories.lib.utexas.edu/handle/2152/26460
101.
Li
,
S.
, and
Torsæter
,
O.
,
2015
, “
The Impact of Nanoparticles Adsorption and Transport on Wettability Alteration of Water Wet Berea Sandstone
,”
SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition
, Nusa Dua, Bali, Indonesia, Oct. 20–22, SPE Paper No.
SPE 176256
.
102.
Cheraghian
,
G.
,
Kiani
,
S.
,
Nassar
,
N. N.
,
Alexander
,
S.
, and
Barron
,
A. R.
,
2017
, “
Silica Nanoparticle Enhancement in the Efficiency of Surfactant Flooding of Heavy Oil in a Glass Micromodel
,”
Ind. Eng. Chem. Res.
,
56
(
30
), pp.
8528
8534
.
103.
Bayat
,
A. E.
, and
Junin
,
R.
,
2015
, “
Transportation of Metal Oxide Nanoparticles Through Various Porous Media for Enhanced Oil Recovery
,”
SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition
, Bali, Indonesia, Oct. 20–22, SPE Paper No.
SPE 176365
.
104.
Park
,
C. M.
,
Chu
,
K. H.
,
Heo
,
J.
,
Her
,
N.
,
Jang
,
M.
,
Son
,
A.
, and
Yoon
,
Y.
,
2016
, “
Environmental Behavior of Engineered Nanomaterials in Porous Media: A Review
,”
J. Hazard. Mater.
,
309
, pp.
133
150
.
105.
Caldelas
,
F. M.
,
Murphy
,
M.
,
Huh
,
C.
, and
Bryant
,
S. L.
,
2011
, “
Factors Governing Distance of Nanoparticle Propagation in Porous Media
,”
SPE Production and Operations Symposium
, Oklahoma, OK, Mar. 27–29, SPE Paper No.
SPE 142305
.
106.
Sasidharan
,
S.
,
Torkzaban
,
S.
,
Bradford
,
S. A.
,
Cook
,
P. G.
, and
Gupta
,
V. V.
,
2017
, “
Temperature Dependency of Virus and Nanoparticle Transport and Retention in Saturated Porous Media
,”
J. Contam. Hydrol.
,
196
, pp.
10
20
.
107.
Duffadar
,
R. D.
, and
Davis
,
J. M.
,
2007
, “
Interaction of Micrometer-Scale Particles With Nanotextured Surfaces in Shear Flow
,”
J. Colloid Interface Sci.
,
308
(
1
), pp.
20
29
.
108.
Bendersky
,
M.
, and
Davis
,
J. M.
,
2011
, “
DLVO Interaction of Colloidal Particles With Topographically and Chemically Heterogeneous Surfaces
,”
J. Colloid Interface Sci.
,
353
(
1
), pp.
87
97
.
109.
Shen
,
C.
,
Wang
,
F.
,
Li
,
B.
,
Jin
,
Y.
,
Wang
,
L.
, and
Huang
,
Y.
,
2012
, “
Application of DLVO Energy Map to Evaluate Interactions Between Spherical Colloids and Rough Surfaces
,”
Langmuir
,
28
(
41
), pp.
14681
14692
.
110.
Bradford
,
S. A.
, and
Torkzaban
,
S.
,
2013
, “
Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media
,”
Langmuir
,
29
(
11
), pp.
3668
3676
.
111.
Suresh
,
L.
, and
Walz
,
J. Y.
,
1996
, “
Effect of Surface Roughness on the Interaction Energy Between a Colloidal Sphere and a Flat Plate
,”
J. Colloid Interface Sci.
,
183
(
1
), pp.
199
213
.
112.
Wiesner
,
M. R.
, and
Bottero
,
J. Y.
,
2007
,
Environmental Nanotechnology: Applications and Impacts of Nanomaterials
,
McGraw-Hill
,
New York
.
113.
Torkzaban
,
S.
,
Kim
,
Y.
,
Mulvihill
,
M.
,
Wan
,
J.
, and
Tokunaga
,
T. K.
,
2010
, “
Transport and Deposition of Functionalized CdTe Nanoparticles in Saturated Porous Media
,”
J. Contam. Hydrol.
,
118
(
3–4
), pp.
208
217
.
114.
Loveland
,
J. P.
,
Bhattacharjee
,
S.
,
Ryan
,
J. N.
, and
Elimelech
,
M.
,
2003
, “
Colloid Transport in a Geochemically Heterogeneous Porous Medium: Aquifer Tank Experiment and Modeling
,”
J. Contam. Hydrol.
,
65
(
3–4
), pp.
161
182
.
115.
Johnson
,
P. R.
,
Sun
,
N.
, and
Elimelech
,
M.
,
1996
, “
Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements
,”
Environ. Sci. Technol.
,
30
(
11
), pp.
3284
3293
.
116.
Tufenkji
,
N.
, and
Elimelech
,
M.
,
2005
, “
Breakdown of Colloid Filtration Theory: Role of the Secondary Energy Minimum and Surface Charge Heterogeneities
,”
Langmuir
,
21
(
3
), pp.
841
852
.
117.
Yao
,
K. M.
,
Habibian
,
M. T.
, and
O'Melia
,
C. R.
,
1971
, “
Water and Wastewater Filtration: Concepts and Applications
,”
Environ. Sci. Technol.
,
5
(
11
), pp.
1105
1112
.
118.
Liu
,
X.
,
O'Carroll
,
D. M.
,
Petersen
,
E. J.
,
Huang
,
Q.
, and
Anderson
,
C. L.
,
2009
, “
Mobility of Multiwalled Carbon Nanotubes in Porous Media
,”
Environ. Sci. Technol.
,
43
(
21
), pp.
8153
8158
.
119.
Bradford
,
S. A.
,
Simunek
,
J.
,
Bettahar
,
M.
,
van Genuchten
,
M. T.
, and
Yates
,
S. R.
,
2003
, “
Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media
,”
Environ. Sci. Technol.
,
37
(
10
), pp.
2242
2250
.
120.
Corapcioglu
,
M. Y.
, and
Choi
,
H.
,
1996
, “
Modeling Colloid Transport in Unsaturated Porous Media and Validation With Laboratory Column Data
,”
Water Resour. Res.
,
32
(
12
), pp.
3437
3449
.
121.
Bradford
,
S. A.
,
Torkzaban
,
S.
, and
Simunek
,
J.
,
2011
, “
Modeling Colloid Transport and Retention in Saturated Porous Media Under Unfavorable Attachment Conditions
,”
Water Resour. Res.
,
47
(
10
), p.
W10503
.
122.
Kasel
,
D.
,
Bradford
,
S. A.
,
Šimůnek
,
J.
,
Heggen
,
M.
,
Vereecken
,
H.
, and
Klumpp
,
E.
,
2013
, “
Transport and Retention of Multi-Walled Carbon Nanotubes in Saturated Porous Media: Effects of Input Concentration and Grain Size
,”
Water Res.
,
47
(
2
), pp.
933
944
.
123.
Jiang
,
X.
,
Tong
,
M.
,
Lu
,
R.
, and
Kim
,
H.
,
2012
, “
Transport and Deposition of ZnO Nanoparticles in Saturated Porous Media
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
401
, pp.
29
37
.
124.
He
,
F.
,
Zhang
,
M.
,
Qian
,
T.
, and
Zhao
,
D.
,
2009
, “
Transport of Carboxymethyl Cellulose Stabilized Iron Nanoparticles in Porous Media: Column Experiments and Modeling
,”
J. Colloid Interface Sci.
,
334
(
1
), pp.
96
102
.
125.
Rahman
,
T.
,
George
,
J.
, and
Shipley
,
H. J.
,
2013
, “
Transport of Aluminum Oxide Nanoparticles in Saturated Sand: Effects of Ionic Strength, Flow Rate, and Nanoparticle Concentration
,”
Sci. Total Environ.
,
463–464
, pp.
565
571
.
126.
Camesano
,
T. A.
,
Unice
,
K. M.
, and
Logan
,
B. E.
,
1999
, “
Blocking and Ripening of Colloids in Porous Media and Their Implications for Bacterial Transport
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
160
(
3
), pp.
291
307
.
127.
Li
,
Y.
,
Wang
,
Y.
,
Pennell
,
K. D.
, and
Abriola
,
L. M.
,
2008
, “
Investigation of the Transport and Deposition of Fullerene (C60) Nanoparticles in Quartz Sands Under Varying Flow Conditions
,”
Environ. Sci. Technol.
,
42
(
19
), pp.
7174
7180
.
128.
Wang
,
Y.
,
Li
,
Y.
,
Fortner
,
J. D.
,
Hughes
,
J. B.
,
Abriola
,
L. M.
, and
Pennell
,
K. D.
,
2008
, “
Transport and Retention of Nanoscale C60 Aggregates in Water-Saturated Porous Media
,”
Environ. Sci. Technol.
,
42
(
10
), pp.
3588
3594
.
129.
Liang
,
Y.
,
Bradford
,
S. A.
,
Simunek
,
J.
,
Heggen
,
M.
,
Vereecken
,
H.
, and
Klumpp
,
E.
,
2013
, “
Retention and Remobilization of Stabilized Silver Nanoparticles in an Undisturbed Loamy Sand Soil
,”
Environ. Sci. Technol.
,
47
(
21
), pp.
12229
12237
.
130.
Rahmatpour
,
S.
,
Mosaddeghi
,
M. R.
,
Shirvani
,
M.
, and
Šimůnek
,
J.
,
2018
, “
Transport of Silver Nanoparticles in Intact Columns of Calcareous Soils: The Role of Flow Conditions and Soil Texture
,”
Geoderma
,
322
, pp.
89
100
.
131.
Tufenkji
,
N.
, and
Elimelech
,
M.
,
2004
, “
Deviation From the Classical Colloid Filtration Theory in the Presence of Repulsive DLVO Interactions
,”
Langmuir
,
20
(
25
), pp.
10818
10828
.
132.
Mattison
,
N. T.
,
O'Carroll
,
D. M.
,
Kerry Rowe
,
R.
, and
Petersen
,
E. J.
,
2011
, “
Impact of Porous Media Grain Size on the Transport of Multi-Walled Carbon Nanotubes
,”
Environ. Sci. Technol.
,
45
(
22
), pp.
9765
9775
.
133.
Rahman
,
T.
,
Millwater
,
H.
, and
Shipley
,
H. J.
,
2014
, “
Modeling and Sensitivity Analysis on the Transport of Aluminum Oxide Nanoparticles in Saturated Sand: Effects of Ionic Strength, Flow Rate, and Nanoparticle Concentration
,”
Sci. Total Environ.
,
499
, pp.
402
412
.
134.
Zhang
,
L.
,
Hou
,
L.
,
Wang
,
L.
,
Kan
,
A. T.
,
Chen
,
W.
, and
Tomson
,
M. B.
,
2012
, “
Transport of Fullerene Nanoparticles (nC60) in Saturated Sand and Sandy Soil: Controlling Factors and Modeling
,”
Environ. Sci. Technol.
,
46
(
13
), pp.
7230
7238
.
135.
Goldberg
,
E.
,
Scheringer
,
M.
,
Bucheli
,
T. D.
, and
Hungerbu¨hler
,
K.
,
2014
, “
Critical Assessment of Models for Transport of Engineered Nanoparticles in Saturated Porous Media
,”
Environ. Sci. Technol.
,
48
(
21
), pp.
12732
12741
.
136.
Roy
,
S. B.
, and
Dzombak
,
D. A.
,
1996
, “
Colloid Release and Transport Processes in Natural and Model Porous Media
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
107
, pp.
245
262
.
137.
Grolimund
,
D.
,
Barmettler
,
K.
, and
Borkovec
,
M.
,
2001
, “
Release and Transport of Colloidal Particles in Natural Porous Media—2: Experimental Results and Effects of Ligands
,”
Water Resour. Res.
,
37
(
3
), pp.
571
582
.
138.
Bergendahl
,
J.
, and
Grasso
,
D.
,
2000
, “
Prediction of Colloid Detachment in a Model Porous Media: Hydrodynamics
,”
Chem. Eng. Sci.
,
55
(
9
), pp.
1523
1532
.
139.
Lenhart
,
J. J.
, and
Saiers
,
J. E.
,
2003
, “
Colloid Mobilization in Water-Saturated Porous Media Under Transient Chemical Conditions
,”
Environ. Sci. Technol.
,
37
(
12
), pp.
2780
2787
.
140.
Tosco
,
T.
,
Tiraferri
,
A.
, and
Sethi
,
R.
,
2009
, “
Ionic Strength Dependent Transport of Microparticles in Saturated Porous Media: Modeling Mobilization and Immobilization Phenomena Under Transient Chemical Conditions
,”
Environ. Sci. Technol.
,
43
(
12
), pp.
4425
4431
.
141.
Bradford
,
S. A.
,
Torkzaban
,
S.
,
Kim
,
H.
, and
Simunek
,
J.
,
2012
, “
Modeling Colloid and Microorganism Transport and Release With Transients in Solution Ionic Strength
,”
Water Resour. Res.
,
48
(
9
), p.
W09509
.
142.
Ju
,
B.
,
Dai
,
S.
,
Luan
,
Z.
,
Zhu
,
T.
,
Su
,
X.
, and
Qiu
,
X.
,
2002
, “
A Study of Wettability and Permeability Change Caused by Adsorption of Nanometer Structured Polysilicon on the Surface of Porous Media
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
, Melbourne, Australia, Oct. 8–10, SPE Paper No.
SPE 77938
.
143.
Lenhart
,
J. J.
, and
Saiers
,
J. E.
,
2002
, “
Transport of Silica Colloids Through Unsaturated Porous Media: Experimental Results and Model Comparisons
,”
Environ. Sci. Technol.
,
36
(
4
), pp.
769
777
.
144.
Šimůnek
,
J.
,
He
,
C.
,
Pang
,
L.
, and
Bradford
,
S. A.
,
2006
, “
Colloid-Facilitated Solute Transport in Variably Saturated Porous Media
,”
Vadose Zone J.
,
5
(
3
), pp.
1035
1047
.
145.
Torkzaban
,
S.
,
Bradford
,
S. A.
,
van Genuchten
,
M. T.
, and
Walker
,
S. L.
,
2008
, “
Colloid Transport in Unsaturated Porous Media: The Role of Water Content and Ionic Strength on Particle Straining
,”
J. Contam. Hydrol.
,
96
(
1–4
), pp.
113
127
.
146.
Cheng
,
T.
, and
Saiers
,
J. E.
,
2009
, “
Mobilization and Transport of In Situ Colloids During Drainage and Imbibition of Partially Saturated Sediments
,”
Water Resour. Res.
,
45
, p.
W08414
.
147.
Ju
,
B.
, and
Fan
,
T.
,
2009
, “
Experimental Study and Mathematical Model of Nanoparticle Transport in Porous Media
,”
Powder Technol.
,
192
(
2
), pp.
195
202
.
148.
Kumahor
,
S. K.
,
Hron
,
P.
,
Metreveli
,
G.
,
Schaumann
,
G. E.
, and
Vogel
,
H. J.
,
2015
, “
Transport of Citrate-Coated Silver Nanoparticles in Unsaturated Sand
,”
Sci. Total Environ.
,
535
, pp.
113
121
.
149.
Bradford
,
S. A.
, and
Leij
,
F. J.
,
1997
, “
Estimating Interfacial Areas for Multi-Fluid Soil Systems
,”
J. Contam. Hydrol.
,
27
(
1–2
), pp.
83
105
.
150.
Schäfer
,
A.
,
Ustohal
,
P.
,
Harms
,
H.
,
Stauffer
,
F.
,
Dracos
,
T.
, and
Zehnder
,
A. J.
,
1998
, “
Transport of Bacteria in Unsaturated Porous Media
,”
J. Contam. Hydrol.
,
33
(
1–2
), pp.
149
169
.
151.
Sim
,
Y.
, and
Chrysikopoulos
,
C. V.
,
2000
, “
Virus Transport in Unsaturated Porous Media
,”
Water Resour. Res.
,
36
(
1
), pp.
173
179
.
152.
Kim
,
M. K.
,
Kim
,
S. B.
, and
Park
,
S. J.
,
2008
, “
Bacteria Transport in an Unsaturated Porous Media: Incorporation of Air-Water Interface Area Model Into Transport Modeling
,”
Hydrol. Process.
,
22
(
13
), pp.
2370
2376
.
153.
Niemet
,
M. R.
,
Rockhold
,
M. L.
,
Weisbrod
,
N.
, and
Selker
,
J. S.
,
2002
, “
Relationships Between Gas-Liquid Interfacial Surface Area, Liquid Saturation, and Light Transmission in Variably Saturated Porous Media
,”
Water Resour. Res.
,
38
(
8
), p.
10
.
154.
Ryan
,
J. N.
,
Illangasekare
,
T. H.
,
Litaor
,
M. I.
, and
Shannon
,
R.
,
1998
, “
Particle and Plutonium Mobilization in Macroporous Soils During Rainfall Simulations
,”
Environ. Sci. Technol.
,
32
(
4
), pp.
476
482
.
155.
El-Farhan
,
Y. H.
,
DeNovio
,
N. M.
,
Herman
,
J. S.
, and
Hornberger
,
G. M.
,
2000
, “
Mobilization and Transport of Soil Particles During Infiltration Experiments in an Agricultural Field, Shenandoah Valley, Virginia
,”
Environ. Sci. Technol.
,
34
(
17
), pp.
3555
3559
.
156.
Saiers
,
J. E.
, and
Lenhart
,
J. J.
,
2003
, “
Colloid Mobilization and Transport Within Unsaturated Porous Media Under Transient-Flow Conditions
,”
Water Resour. Res.
,
39
(
1
), p.
10
.
157.
Shang
,
J.
,
Flury
,
M.
,
Chen
,
G.
, and
Zhuang
,
J.
,
2008
, “
Impact of Flow Rate, Water Content, and Capillary Forces on In Situ Colloid Mobilization During Infiltration in Unsaturated Sediments
,”
Water Resour. Res.
,
44
, p.
W06411
.
158.
Gao
,
B.
,
Saiers
,
J. E.
, and
Ryan
,
J. N.
,
2004
, “
Deposition and Mobilization of Clay Colloids in Unsaturated Porous Media
,”
Water Resour. Res.
,
40
, p.
W08602
.
159.
Bradford
,
S. A.
,
Wang
,
Y.
,
Torkzaban
,
S.
, and
Šimůnek
,
J.
,
2015
, “
Modeling the Release of E. coli D21 g With Transients in Water Content
,”
Water Resour. Res.
,
51
(
5
), pp.
3303
3316
.
160.
Wang
,
Y.
,
Bradford
,
S. A.
, and
Simunek
,
J.
,
2014
, “
Release of E. coli D21 g With Transients in Water Content
,”
Environ. Sci. Technol.
,
48
(
16
), pp.
9349
9357
.
161.
Karadimitriou
,
N. K.
,
2013
, “
Two-Phase Flow Experimental Studies in Micro-Models
,”
Ph.D. dissertation
, Utrecht University, Utrecht, The Netherlands.https://dspace.library.uu.nl/handle/1874/275062
162.
Allen
,
M. B.
, III
,
Behie
,
G. A.
, and
Trangenstein
,
J. A.
,
1988
,
Multiphase Flow in Porous Media: Mechanics, Mathematics, and Numerics
,
Springer-Verlag
,
New York
.
163.
Delgado
,
J. M. P. Q.
,
2006
, “
A Critical Review of Dispersion in Packed Beds
,”
Heat Mass Transfer
,
42
(
4
), pp.
279
310
.
164.
Delgado
,
J. M. P. Q.
,
2007
, “
Longitudinal and Transverse Dispersion in Porous Media
,”
Chem. Eng. Res. Des.
,
85
(
9
), pp.
1245
1252
.
165.
Bijeljic
,
B.
,
Muggeridge
,
A. H.
, and
Blunt
,
M. J.
,
2004
, “
Pore-Scale Modeling of Longitudinal Dispersion
,”
Water Resour. Res.
,
40
(
11
), p.
W11501
.
166.
Mehmani
,
Y.
,
Oostrom
,
M.
, and
Balhoff
,
M. T.
,
2014
, “
A Streamline Splitting Pore-Network Approach for Computationally Inexpensive and Accurate Simulation of Transport in Porous Media
,”
Water Resour. Res.
,
50
(
3
), pp.
2488
2517
.
167.
Bultreys, T.
,
Van Hoorebeke, L.
, and
Cnudde, V.
, 2015, “
Multi-Scale, Micro-Computed Tomography-Based Pore Network Models to Simulate Drainage in Heterogeneous Rocks
,”
Adv. Water Resour.
,
78
, pp. 36–49.
168.
Yang
,
H.
, and
Balhoff
,
M. T.
,
2017
, “
Pore-Network Modeling of Particle Retention in Porous Media
,”
AIChE J.
,
63
(
7
), pp.
3118
3131
.
169.
Wopara
,
O. F.
, and
Iyuke
,
S. E.
,
2018
, “
Review of Studies on Pore-Network Modeling of Wettability Effects on Waterflood Oil Recovery
,”
J. Pet. Gas Eng.
,
9
(
2
), pp.
11
22
.
170.
Xiong
,
Q.
,
Baychev
,
T. G.
, and
Jivkov
,
A. P.
,
2016
, “
Review of Pore Network Modelling of Porous Media: Experimental Characterisations, Network Constructions and Applications to Reactive Transport
,”
J. Contam. Hydrol.
,
192
, pp.
101
117
.
171.
Meng
,
X.
, and
Yang
,
D.
,
2018
, “
Dynamic Dispersion Coefficient of Solutes Flowing in a Circular Tube and a Tube-Bundle Model
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012903
.
172.
Taylor
,
G.
,
1953
, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
219
(
1137
), pp.
186
203
.
173.
Aris
,
R.
,
1956
, “
On the Dispersion of a Solute in a Fluid Lowing Through a Tube
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
235
(
1200
), pp.
67
77
.
174.
Barton
,
N. G.
,
1983
, “
On the Method of Moments for Solute Dispersion
,”
J. Fluid Mech.
,
126
(
1
), pp.
205
218
.
175.
James
,
S. C.
, and
Chrysikopoulos
,
C. V.
,
2003
, “
Effective Velocity and Effective Dispersion Coefficient for Finite-Sized Particles Flowing in a Uniform Fracture
,”
J. Colloid Interface Sci.
,
263
(
1
), pp.
288
295
.
176.
Meng
,
X.
, and
Yang
,
D.
,
2016
, “
Determination of Dynamic Dispersion Coefficient for Particles Flowing in a Parallel-Plate Fracture
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
509
, pp.
259
278
.
177.
Meng
,
X.
, and
Yang
,
D.
,
2017
, “
Determination of Dynamic Dispersion Coefficients for Passive and Reactive Particles Flowing in a Circular Tube
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
524
, pp.
96
110
.
178.
Shvidler
,
M.
, and
Karasaki
,
K.
,
2003
, “
Probability Density Functions for Solute Transport in Random Field
,”
Transp. Porous Media
,
50
(
3
), pp.
243
266
.
179.
Mehmani
,
Y.
, and
Balhoff
,
M. T.
,
2015
, “
Eulerian Network Modeling of Longitudinal Dispersion
,”
Water Resour. Res.
,
51
(
10
), pp.
8586
8606
.
180.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Elsevier
,
New York
.
181.
Lugo-Mendez
,
H. D.
,
Valdes-Parada
,
F. J.
, and
Ochoa-Tapia
,
J. A.
,
2013
, “
An Analytical Expression for the Dispersion Coefficient in Porous Media Using Chang's Unit Cell
,”
J. Porous Media
,
16
(
1
), pp.
29
40
.
182.
Freund
,
H.
,
Bauer
,
J.
,
Zeiser
,
T.
, and
Emig
,
G.
,
2005
, “
Detailed Simulation of Transport Processes in Fixed-Beds
,”
Ind. Eng. Chem. Res.
,
44
(
16
), pp.
6423
6434
.
183.
Wood
,
B. D.
,
2007
, “
Inertial Effects in Dispersion in Porous Media
,”
Water Resour. Res.
,
43
(
12
), p.
W12S16
.
184.
Auset
,
M.
, and
Keller
,
A. A.
,
2004
, “
Pore-Scale Processes That Control Dispersion of Colloids in Saturated Porous Media
,”
Water Resour. Res.
,
40
(
3
), p.
W03503
.
185.
Baumann
,
T.
,
Toops
,
L.
, and
Niessner
,
R.
,
2010
, “
Colloid Dispersion on the Pore Scale
,”
Water Res.
,
44
(
4
), pp.
1246
1254
.
186.
Chrysikopoulos
,
C. V.
, and
Katzourakis
,
V. E.
,
2015
, “
Colloid Particle Size-Dependent Dispersivity
,”
Water Resour. Res.
,
51
(
6
), pp.
4668
4683
.
You do not currently have access to this content.