Thermochemical energy storage (TCES) represents one of the most promising energy storage technologies, currently investigated. It uses the heat of reaction of reversible reaction systems and stands out due to the high energy density of its storage materials combined with the possibility of long-term storage with little to no heat losses. Gas–solid reactions, in particular the reaction systems CaCO3/CaO, CaO/Ca(OH)2 and MgO/Mg(OH)2 are of key interest in current research. Until now, fixed bed reactors are the state of the art for TCES systems. However, fluidized bed reactors offer significant advantages for scale-up of the system: the improved heat and mass transfer allows for higher charging/discharging power, whereas the favorable, continuous operation mode enables a decoupling of storage power and capacity. Even though gas–solid fluidized beds are being deployed for wide range of industrial operations, the fluidization of cohesive materials, such as the aforementioned metal oxides/hydroxides, still represents a sparsely investigated field. The consequent lack of knowledge of physical, chemical, and technical parameters of the processes on hand is currently a hindering aspect for a proper design and scale-up of fluidized bed reactors for MW applications of TCES. Therefore, the experimental research at Technical University of Munich (TUM) focuses on a comprehensive approach to address this problem. Preliminary experimental work has been carried out on a fixed bed reactor to cover the topic of chemical cycle stability of storage materials. In order to investigate the fluidization behavior of the bulk material, a fluidized bed cold model containing a heat flux probe and operating at atmospheric conditions has been deployed. The experimental results have identified the heat input and output as the most influential aspect for both the operation and a possible scale-up of such a TCES system. The decisive parameter for the heat input and output is the heat transfer coefficient between immersed heat exchangers and the fluidized bed. This coefficient strongly depends on the quality of fluidization, which in turn is directly related to the geometry of the gas distributor plate. At TUM, a state-of-the-art pilot fluidized bed reactor is being commissioned to further investigate the aforementioned aspects. This reactor possesses an overall volume of 100 L with the expanded bed volume taking up 30 L. Two radiation furnaces (64 kW) are used to heat the reactor. The heat of reaction of the exothermal hydration reaction is removed by water, evaporating in a cooling coil, immersed in the fluidized bed. Fluidization is being achieved with a mixture of steam and nitrogen at operating temperatures of up to 700 °C and operating pressures between −1 and 6 bar(g). The particle size is in the range of d50 = 20 μm. While initial experiments on this reactor focus on optimal operating and material parameters, the long-term goal is to establish correlations for model design and scale-up purposes.

References

References
1.
BMWi
,
2018
, “
Nationales Reformprogramm, Bundesministerium für Wirtschaft und Energie (BMWi)
,” Frankfurt, Germany, Accessed May 11, 2019, https://www.bmwi.de/Redaktion/DE/Publikationen/Europa/nationales-reformprogramm-2018.html
2.
Bundestag
,
D.
,
2011
, “
Bundestag Beschließt Atomausstieg und Energiewende
,” Berlin, Accessed May 11, 2019, https://www.bundestag.de/dokumente/textarchiv/2011/34938007_kw26_de_energiewende-205804
3.
Sterner
,
M.
, and
Stadler
,
I.
,
2014
, “
Energiespeicher-Bedarf, Technologien, Integration
,” Springer-Verlag, Berlin.
4.
Ervin
,
G.
,
1977
, “
Solar Heat Storage Using Chemical Reactions
,”
J. Solid State Chem.
,
22
(
1
), pp.
51
61
.
5.
Ervin
,
G.
,
1976
, “
Method of Storing and Releasing Thermal Energy
,” Patent No. US3973552.
6.
Rosemary
,
J. K.
,
Bauerle
,
G. L.
, and
Springer
,
T. H.
,
1979
, “
Solar Energy Storage Using Reversible Hydration-Dehydration of CaO-Ca(OH)2
,”
J. Energy
,
3
(
6
), pp.
321
322
.
7.
Bayon
,
A.
,
Bader
,
R.
,
Jafarian
,
M.
,
Fedunik-Hofman
,
L.
,
Sun
,
Y.
,
Hinkley
,
J.
,
Miller
,
S.
, and
Lipiński
,
W.
,
2018
, “
Techno-Economic Assessment of Solid–Gas Thermochemical Energy Storage Systems for Solar Thermal Power Applications
,”
Energy
,
149
, pp.
473
484
.
8.
Sakellariou
,
K. G.
,
Criado
,
Y. A.
,
Tsongidis
,
N. I.
,
Karagiannakis
,
G.
, and
Konstandopoulos
,
A. G.
,
2017
, “
Multi-Cyclic Evaluation of Composite CaO-Based Structured Bodies for Thermochemical Heat Storage Via the CaO/Ca(OH)2 Reaction Scheme
,”
Sol. Energy
,
146
, pp.
65
78
.
9.
Pardo
,
P.
,
Deydier
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cabassud
,
M.
, and
Cognet
,
P.
,
2014
, “
A Review on High Temperature Thermochemical Heat Energy Storage
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
591
610
.
10.
Cabeza
,
L. F.
,
Solé
,
A.
,
Fontanet
,
X.
,
Barreneche
,
C.
,
Jové
,
A.
,
Gallas
,
M.
,
Prieto
,
C.
, and
Fernández
,
A. I.
,
2017
, “
Thermochemical Energy Storage by Consecutive Reactions for Higher Efficient Concentrated Solar Power Plants (CSP): Proof of Concept
,”
Appl. Energy
,
185
(
Part 1
), pp.
836
845
.
11.
Schmidt
,
M.
, and
Linder
,
M.
,
2017
, “
Power Generation Based on the Ca(OH)2/CaO Thermochemical Storage System—Experimental Investigation of Discharge Operation Modes in Lab Scale and Corresponding Conceptual Process Design
,”
Appl. Energy
,
203
, pp.
594
607
.
12.
Angerer
,
M.
,
Djukow
,
M.
,
Riedl
,
K.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
, p.
20909
.
13.
Kingery
,
W. D.
,
Francl
,
J.
,
Coble
,
R. L.
, and
Vasilos
,
T.
,
1954
, “
Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity
,”
J. Am. Ceram. Soc.
,
37
(
2
), pp.
107
110
.
14.
Kanzawa
,
A.
, and
Arai
,
Y.
,
1981
, “
Thermal Energy Storage by the Chemical Reaction Augmentation of Heat Transfer and Thermal Decomposition in the CaOCa(OH)2 Powder
,”
Sol. Energy
,
27
(
4
), pp.
289
294
.
15.
Schmidt
,
M.
,
Szczukowski
,
C.
,
Roßkopf
,
C.
,
Linder
,
M.
, and
Wörner
,
A.
,
2014
, “
Experimental Results of a 10 kW High Temperature Thermochemical Storage Reactor Based on Calcium Hydroxide
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
553
559
.
16.
Schaube
,
F.
,
Koch
,
L.
,
Wörner
,
A.
, and
Müller-Steinhagen
,
H.
,
2012
, “
A Thermodynamic and Kinetic Study of the de- and Rehydration of Ca(OH)2 at High H2O Partial Pressures for Thermo-Chemical Heat Storage
,”
Thermochim. Acta
,
538
, pp.
9
20
.
17.
Pan
,
Z. H.
, and
Zhao
,
C. Y.
,
2017
, “
Gas–Solid Thermochemical Heat Storage Reactors for High-Temperature Applications
,”
Energy
,
130
, pp.
155
173
.
18.
F.
Schaube
,
A.
Wörner
, and
H.
Müller-Steinhagen
, ed.,
2009
, “
High Temperature Heat Storage Using Gas-Solid Reactions
,”
EFFSTOCK 2009—11th International Conference on Energy Storage
, Stockholm, Sweden, June.https://www.researchgate.net/publication/225002614_HIGH_TEMPERATURE_HEAT_STORAGE_USING_GAS-SOLIDREACTIONS
19.
Yan
,
J.
, and
Zhao
,
C. Y.
,
2016
, “
Experimental Study of CaO/Ca(OH)2 in a Fixed-Bed Reactor for Thermochemical Heat Storage
,”
Appl. Energy
,
175
, pp.
277
284
.
20.
Schaube
,
F.
,
2013
, “
Untersuchungen zur Nutzung des CaO/Ca(OH)2-Reaktionssystems für die Thermochemische Wärmespeicherung
,” Dissertation, University of Stuttgart, Stuttgart, Germany.
21.
Fujii
,
I.
,
Tsuchiya
,
K.
,
Higano
,
M.
, and
Yamada
,
J.
,
1985
, “
Studies of an Energy Storage System by Use of the Reversible Chemical Reaction: CaO + H2O ⇌ Ca(OH)2
,”
Sol. Energy
,
34
(
4–5
), pp.
367
377
.
22.
Schmidt
,
M.
,
Gollsch
,
M.
,
Giger
,
F.
,
Grün
,
M.
, and
Linder
,
M.
,
2016
, “
Development of a Moving Bed Pilot Plant for Thermochemical Energy Storage With CaO/Ca(OH)2
,”
AIP Conf. Proc.
,
1734
(
2016
), p.
50041
.
23.
Schmidt
,
M.
,
2017
, “
Experimental Investigation of Ca(OH)2 as Thermochemical Energy Storage at Process Relevant Boundary Conditions
,” Dissertation, University of Stuttgart, Stuttgart, Germany.
24.
Rougé
,
S.
,
A. Criado
,
Y.
,
Soriano
,
O.
, and
Abanades
,
J. C.
,
2017
, “
Continuous CaO/Ca(OH)2 Fluidized Bed Reactor for Energy Storage: First Experimental Results and Reactor Model Validation
,”
Ind. Eng. Chem. Res.
,
56
(
4
), pp.
844
852
.
25.
Criado
,
Y. A.
,
Huille
,
A.
,
Rougé
,
S.
, and
Abanades
,
J. C.
,
2016
, “
Experimental Investigation and Model Validation of a CaO/Ca(OH)2 Fluidized Bed Reactor for Thermochemical Energy Storage Applications
,”
Chem. Eng. J.
,
313
,
1194
1205
.
26.
Schaube
,
F.
,
Kohzer
,
A.
,
Schütz
,
J.
,
Wörner
,
A.
, and
Müller-Steinhagen
,
H.
,
2013
, “
De- and Rehydration of Ca (OH)2 in a Reactor With Direct Heat Transfer for Thermo-Chemical Heat Storage—Part A: Experimental Results
,”
Chem. Eng. Res. Des.
,
91
(
5
), pp.
856
864
.
27.
D. K.
Levenspiel
, ed.,
1991
,
Fluidization Engineering
,
2nd ed.
,
Butterworth-Heinemann
,
Boston, MA
.
28.
Alvarez Criado
,
Y.
,
Alonso
,
M.
, and
Abanades
,
J. C.
,
2015
, “
Composite Material for Thermochemical Energy Storage Using CaO/Ca(OH)2
,”
Ind. Eng. Chem. Res.
,
54
(
38
),
9314
9327
.https://pubs.acs.org/doi/abs/10.1021/acs.iecr.5b02688
29.
Roßkopf
,
C.
,
Haas
,
M.
,
Faik
,
A.
,
Linder
,
M.
, and
Wörner
,
A.
,
2014
, “
Improving Powder Bed Properties for Thermochemical Storage by Adding Nanoparticles
,”
Energy Convers. Manage.
,
86
, pp.
93
98
.
30.
Afflerbach
,
S.
,
Kappes
,
M.
,
Gipperich
,
A.
,
Trettin
,
R.
, and
Krumm
,
W.
,
2017
, “
Semipermeable Encapsulation of Calcium Hydroxide for Thermochemical Heat Storage Solutions
,”
Sol. Energy
,
148
, pp.
1
11
.
31.
Ostermeier
,
P.
,
Dawo
,
F.
,
Vandersickel
,
A.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Numerical Calculation of Wall-to-Bed Heat Transfer Coefficients in Geldart B Bubbling Fluidized Beds With Immersed Horizontal Tubes
,”
Powder Technol.
,
333
, pp.
193
208
.
32.
Ostermeier
,
P.
,
Vandersickel
,
A.
,
Becker
,
M.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2017
, “
Hydrodynamics and Heat Transfer Around a Horizontal Tube Immersed in a Geldart B Bubbling Fluidized Bed
,” Multiphase Flow: Theory and Applications, WIT Press, Southampton, UK.
33.
Ostermeier
,
P.
,
Vandersickel
,
A.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2017
, “
Three Dimensional Multi Fluid Modeling of Geldart B Bubbling Fluidized Bed With Complex Inlet Geometries
,”
Powder Technol.
,
312
, pp.
89
102
.
You do not currently have access to this content.