With the supply restriction from traditional rare earth deposits, alternative sources of rare earth elements (REEs) such as coal are being studied. The United States National Energy Technology Laboratory has identified US coal deposits as a potential source of rare earth elements. Several techniques such as physical separation, flotation, ion-exchange, agglomeration, and leaching are being evaluated for the successful exploitation of these elements from coal and its by-products. A previous study published in the Geoscience BC 2018 mineral report on the characterization of REE in the British Columbian coal samples have shown that a major portion of the rare earth in the run of mine coal reports to the middling and tailing streams. Hence, this study is focused on the extraction of the rare earth from coal tailings. Several studies have shown the use of an alkali-acid leaching process to successfully demineralize various high ash coals to produce a clean coal concentrate since the ash-bearing components such as clay and quartz were removed from the coal during this process. In this study, the alkali-acid leach process was adopted to chemically clean coal tailings as well as to extract rare earth elements. Different process parameters such as sodium hydroxide (NaOH) concentration, temperature, and time were studied. Results showed that it is possible to extract more than 85% of REE with this process and simultaneously produce clean coal from coal tailing.

References

References
1.
Connelly
,
N. G.
,
Damhus
,
T.
,
Hartshorn
,
R. M.
, and
Hutton
,
A. T.
,
2005
,
Nomenclature of Inorganic Chemistry
,
Royal Society of Chemistry
, Cambridge, UK.
2.
Haxel
,
G. B.
,
Hedrick
,
J. B.
,
Orris
,
G. J.
,
Stauffer
,
P. H.
, and
Hendley
,
J. W.
, II
,
2002
,
Rare Earth Elements: Critical Resources for High Technology
, United States Geological Survey, Reston, VA.
3.
United States Geological Survey
,
2007
,
Mineral Commodity Summaries—Rare Earths
,
United States Geological Survey
, Reston, VA.
4.
Gupta
,
C. K.
, and
Krishnamurthy
,
N.
,
2005
,
Extractive Metallurgy of Rare Earths
,
CRC Press
,
Boca Raton, FL
.
5.
Cordier
,
D. J.
,
2009
,
Rare Earths
, United States Geological Survey, Reston, VA.
6.
Dai
,
S.
,
Li
,
D.
,
Chou
,
C. L.
,
Zhao
,
L.
,
Zhang
,
Y.
,
Ren
,
D.
,
Ma
,
Y.
, and
Sun
,
Y.
,
2008
, “
Mineralogy and Geochemistry of Boehmite-Rich Coals: New Insights From the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China
,”
Int. J. Coal Geol.
,
74
(
3-4
), pp.
185
202
.
7.
Moldoveanu
,
G. A.
, and
Papangelakis
,
V. G.
,
2013
, “
Recovery of Rare Earth Elements Adsorbed on Clay Minerals—II: Leaching With Ammonium Sulfate
,”
Hydrometallurgy
,
131–132
(
Suppl. C
), pp.
158
166
.
8.
Zhang
,
W.
,
Rezaee
,
M.
,
Bhagavatula
,
A.
,
Li
,
Y.
,
Groppo
,
J.
, and
Honaker
,
R.
,
2015
, “
A Review of the Occurrence and Promising Recovery Methods of Rare Earth Elements From Coal and Coal By-Products
,”
Int. J. Coal Prep. Util.
,
35
(
6
), pp.
281
294
.
9.
Chegwidden
,
J.
, and
Kingsnorth
,
D. J.
,
2010
, “
Rare Earths Facing the Uncertainty's of Supply
,”
Sixth International Rare Earths Conference
, Hong Kong, Roskill and Metal Events, Wimbledon, London, UK.
10.
Lynas
,
2010
, “
ASX Mid Caps Conference Presentation
,” ASX, Chicago, IL, accessed Nov. 4, 2017, http://www.asx.com.au/smalltomidcaps/newyork/2010/presentation_lynas.pdf
11.
Zepf
,
V.
,
2013
,
Rare Earth Elements a New Approach to the Nexus of Supply, Demand and Use: Exemplified Along the Use of Neodymium in Permanent Magnets
,
Springer
,
Berlin
.
12.
Tse
,
P.-K.
,
2011
, China's Rare-Earth Industry, United States Geological Survey, Reston, VA.
13.
Chakhmouradian
,
A.
,
2014
, “
Standing Committee on Natural Resources
,” Parliament of Canada, Parliament Hill, Ottawa, ON, Canada.
14.
Seredin
,
V. V.
, and
Dai
,
S.
,
2012
, “
Coal Deposits as Potential Alternative Sources for Lanthanides and Yttrium
,”
Int. J. Coal Geol.
,
94
, pp.
67
93
.
15.
European Commission
,
2017
,
Study on the Review of the List of Critical Raw Materials—EU Law and Publications
,
European Commission
, Publication Office of the European Union, Luxembourg, France..
16.
U.S. Department of Energy
,
2010
,
Critical Materials Strategy
, US Department of Energy, Washington DC.
17.
O'Driscoll
,
M.
,
1991
, “
An Overview of Rare Earth Minerals Supply and Applications
,”
Mater. Sci. Forum
,
70–72
, pp.
409
420
.
18.
Akcil
,
A.
,
Akhmadiyeva
,
N.
,
Abdulvaliyev
,
R.
,
Abhilash
, and
Meshram
,
P.
,
2017
, “
Overview on Extraction and Separation of Rare Earth Elements From Red Mud: Focus on Scandium
,”
Miner. Process. Extr. Metall. Rev.
,
39
(3), pp.
1
7
.
19.
Binnemans
,
K.
,
Pontikes
,
Y.
,
Jones
,
P. T.
,
Gerven
,
T. V.
, and
Blanpain
,
B.
,
2013
, “
Recovery of Rare Earths From Industrial Waste Residues: A Concise Review
,”
Third International Slag Valorisation Symposium
,
A.
Malfliet
,
P. T.
Jones
,
K.
Binnemans
,
O.
Cizer
,
J.
Fransaer
,
P.
Yan
,
Y.
Pontikes
,
M.
Guo
, and
B.
Blanpain
, eds., Leuven, Belgium, Mar. 19–20, pp.
191
205
.
20.
Borra
,
C. R.
,
Blanpain
,
B.
,
Pontikes
,
Y.
,
Binnemans
,
K.
, and
Van Gerven
,
T.
,
2016
, “
Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review
,”
J. Sustain. Metall.
,
2
(
4
), pp.
365
386
.
21.
Jowitt
,
S. M.
,
Werner
,
T. T.
,
Weng
,
Z.
, and
Mudd
,
G. M.
,
2018
, “
Recycling of the Rare Earth Elements
,”
Curr. Opin. Green Sustain. Chem.
,
13
, pp.
1
7
.
22.
Peelman
,
S.
,
Sun
,
Z. H. I.
,
Sietsma
,
J.
, and
Yang
,
Y.
,
2016
, “
Hydrometallurgical Extraction of Rare Earth Elements From Low Grade Mine Tailings
,”
Rare Metal Technology
,
Springer International Publishing
,
Cham
, Switzerland, pp.
17
29
.
23.
Roth
,
E.
,
Macala
,
M.
,
Lin
,
R.
,
Bank
,
T.
,
Thompson
,
R.
,
Howard
,
B.
,
Soong
,
Y.
, and
Granite
,
E.
,
2017
, “
Distributions and Extraction of Rare Earth Elements From Coal and Coal By-Products
,”
World of Coal Ash
, University of Kentucky Center for Applied Energy Research,
Lexington, KY
, p.
10
.
24.
Smith
,
Y.
,
Kumar
,
P.
, and
McLennan
,
J.
,
2017
, “
On the Extraction of Rare Earth Elements From Geothermal Brines
,”
Resources
,
6
(
3
), p.
39
.
25.
Taggart
,
R. K.
,
Hower
,
J. C.
,
Dwyer
,
G. S.
, and
Hsu-Kim
,
H.
,
2016
, “
Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes
,”
Environ. Sci. Technol.
,
50
(
11
), pp.
5919
5926
.[27228215]
26.
Dai
,
S.
, and
Finkelman
,
R. B.
,
2018
, “
Coal as a Promising Source of Critical Elements: Progress and Future Prospects
,”
Int. J. Coal Geol.
,
186
, pp.
155
164
.
27.
Laudal
,
D. A.
,
Benson
,
S. A.
,
Palo
,
D.
, and
Addleman
,
R. S.
,
2018
, “
Rare Earth Elements in North Dakota Lignite Coal and Lignite-Related Materials
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062205
.
28.
U.S. Department of Energy
,
2016
,
Rare Earth Elements Program
,
U.S. Department of Energy
, Washington DC.
29.
Birk
,
D.
, and
White
,
J. C.
,
1991
, “
Rare Earth Elements in Bituminous Coals and Underclays of the Sydney Basin, Nova Scotia: Element Sites, Distribution, Mineralogy
,”
Int. J. Coal Geol.
,
19
(
1–4
), pp.
219
251
.
30.
Hower
,
J. C.
,
Ruppert
,
L. F.
, and
Eble
,
C. F.
,
1999
, “
Lanthanide, Yttrium, and Zirconium Anomalies in the Fire Clay Coal Bed, Eastern Kentucky
,”
Int. J. Coal Geol.
,
39
(
1–3
), pp.
141
153
.
31.
Seredin
,
V. V.
,
1996
, “
Rare Earth Element-Bearing Coals From the Russian Far East Deposits
,”
Int. J. Coal Geol.
,
30
(
1–2
), pp.
101
129
.
32.
Dai
,
S.
,
Graham
,
I. T.
, and
Ward
,
C. R.
,
2016
, “
A Review of Anomalous Rare Earth Elements and Yttrium in Coal
,”
Int. J. Coal Geol.
,
159
, pp.
82
95
.
33.
Eskenazy
,
G. M.
,
1987
, “
Rare Earth Elements in a Sampled Coal From the Pirin Deposit, Bulgaria
,”
Int. J. Coal Geol.
,
7
(
3
), pp.
301
314
.
34.
Finkelman
,
R. B.
,
Palmer
,
C. A.
, and
Wang
,
P.
,
2018
, “
Quantification of the Modes of Occurrence of 42 Elements in Coal
,”
Int. J. Coal Geol.
,
185
, pp.
138
160
.
35.
Wang
,
W.
,
Qin
,
Y.
,
Sang
,
S.
,
Zhu
,
Y.
,
Wang
,
C.
, and
Weiss
,
D. J.
,
2008
, “
Geochemistry of Rare Earth Elements in a Marine Influenced Coal and Its Organic Solvent Extracts From the Antaibao Mining District, Shanxi, China
,”
Int. J. Coal Geol.
,
76
(
4
), pp.
309
317
.
36.
Lin
,
R.
,
Howard
,
B. H.
,
Roth
,
E. A.
,
Bank
,
T. L.
,
Granite
,
E. J.
, and
Soong
,
Y.
,
2017
, “
Enrichment of Rare Earth Elements From Coal and Coal By-Products by Physical Separations
,”
Fuel
,
200
, pp.
506
520
.
37.
Rozelle
,
P. L.
,
Khadilkar
,
A. B.
,
Pulati
,
N.
,
Soundarrajan
,
N.
,
Klima
,
M. S.
,
Mosser
,
M. M.
,
Miller
,
C. E.
, and
Pisupati
,
S. V.
,
2016
, “
A Study on Removal of Rare Earth Elements From U.S. Coal Byproducts by Ion Exchange
,”
Metall. Mater. Trans. E
,
3
(
1
), pp.
6
17
.
38.
Laskowski
,
J.
,
2001
,
Coal Flotation and Fine Coal Utilization
,
Elsevier
,
Amsterdam, The Netherlands
.
39.
Meshram
,
P.
,
Sinha
,
M.
,
Sahu
,
S.
, and
Pandey
,
B.
,
2012
, “
Chemical Beneficiation of Low Grade Coal—A Review
,”
16th International Conference on Non-Ferrous Metals
, New Delhi, India, July 13–14, p.
13
.
40.
Waugh
,
A. B.
, and
Bowling
,
K. M.
,
1984
, “
Removal of Mineral Matter From Bituminous Coals by Aqueous Chemical Leaching
,”
Fuel Process. Technol.
,
9
(
3
), pp.
217
233
.
41.
Wang
,
Z. Y.
,
Ohtsuka
,
Y.
, and
Tomita
,
A.
,
1986
, “
Removal of Mineral Matter From Coal by Alkali Treatment
,”
Fuel Process. Technol.
,
13
(
3
), pp.
279
289
.
42.
Sriramoju
,
S. K.
,
Suresh
,
A.
,
Lingam
,
R. K.
, and
Dash
,
P. S.
,
2017
, “
Mechanism of a Coal Chemical-Leaching Process and Recovery of Spent Chemicals: A Pilot-Scale Study
,”
Int. J. Coal Prep. Util.
,
37
(
6
), pp.
293
302
.
43.
Krishnamurthy
,
N.
, and
Gupta
,
C.
,
2016
,
Extractive Metallurgy of Rare Earths
,
CRC Press
, Boca Raton, FL.
44.
Habashi
,
F.
,
2013
, “
Extractive Metallurgy of Rare Earths
,”
Can. Metall. Q.
,
52
(
3
), pp.
224
233
.
45.
McGill
,
I.
,
1997
, “
Rare Earth Metals
,”
Handbook of Extractive Metallurgy
,
F.
Habashi
, ed.,
Wiley-VCH
,
Weinheim
, pp.
1695
1757
.
46.
ASTM
,
2012
, “
D2013/D2013M-12 Standard Practice for Preparing Coal Samples for Analysis
,” ASTM, West Conshohocken, PA.
47.
Mukherjee
,
S.
, and
Borthakur
,
P.
,
2001
, “
Chemical Demineralization/Desulphurization of High Sulphur Coal Using Sodium Hydroxide and Acid Solutions
,”
Fuel
,
80
(
14
), pp.
2037
2040
.
48.
Dash
,
P. S.
,
Kumar
,
S. S.
,
Banerjee
,
P. K.
, and
Ganguly
,
S.
,
2013
, “
Chemical Leaching of High-Ash Indian Coals for Production of Low-Ash Clean Coal
,”
Miner. Process. Extr. Metall. Rev.
,
34
(
4
), pp.
223
239
.
49.
Behera
,
S. K.
,
Chakraborty
,
S.
, and
Meikap
,
B. C.
,
2017
, “
Chemical Demineralization of High Ash Indian Coal by Using Alkali and Acid Solutions
,”
Fuel
,
196
, pp.
102
109
.
50.
Nabeel
,
A.
,
Khan
,
T. A.
, and
Sharma
,
D. K.
,
2009
, “
Studies on the Production of Ultra-Clean Coal by Alkali-Acid Leaching of Low-Grade Coals
,”
Energy Sources, Part A
,
31
(
7
), pp.
594
601
.
51.
Wang
,
J.
,
Zhang
,
Z.-G.
,
Kobayashi
,
Y.
, and
Tomita
,
A.
,
1996
, “
Chemistry of Ca(OH)2 Leaching on Mineral Matter Removal From Coal
,”
Energy Fuels
,
10
(
2
), pp.
386
391
.
52.
ASTM
,
2017
, “
D3173/D3173-17a Standard Test Method for Moisture in the Analysis Sample of Coal and Coke
,” ASTM, West Conshohocken, PA.
53.
ASTM
,
2012
, “
D3174-12 Standard Test Method for Ash in the Analysis Sample of Coal and Coke From Coal
,” ASTM, West Conshohocken, PA.
54.
ASTM
,
2017
, “
D3175-17 Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke
,” ASTM, West Conshohocken, PA.
55.
ASTM
,
2013
, “
D3172-13 Standard Practice for Proximate Analysis of Coal and Coke
,” ASTM, West Conshohocken, PA.
56.
Madejova
,
J.
,
Gates
,
W. P.
, and
Petit
,
S.
,
2017
, “
IR Spectra of Clay Minerals
,”
Dev. Clay Sci.
,
8
, pp.
107
149
.
57.
Wang
,
H.
,
Feng
,
Q.
, and
Liu
,
K.
,
2016
, “
The Dissolution Behavior and Mechanism of Kaolinite in Alkali-Acid Leaching Process
,”
Appl. Clay Sci.
,
132–133
, pp.
273
280
.
58.
Breck
,
D. W.
,
1973
,
Zeolite Molecular Sieves: Structure, Chemistry, and Use
,
Wiley
,
New York
.
59.
Buhl
,
J.-C.
,
Hoffmann
,
W.
,
Buckermann
,
W. A.
, and
Müller-Warmuth
,
W.
,
1997
, “
The Crystallization Kinetics of Sodalites Grown by the Hydrothermal Transformation of Kaolinite Studied by Si MAS NMR
,”
Solid State Nucl. Magn. Reson.
,
9
(
2–4
), pp.
121
128
.
60.
Rahman
,
M.
,
Pudasainee
,
D.
, and
Gupta
,
R.
,
2017
, “
Review on Chemical Upgrading of Coal: Production Processes, Potential Applications and Recent Developments
,”
Fuel Process. Technol.
,
158
, pp.
35
56
.
61.
Kuppusamy
,
V. K.
,
Kumar
,
A.
, and
Holuszko
,
M. E.
,
2018
, “
Occurrence of Rare-Earth Elements in Selected British Columbian Coal Deposits and Their Derivative Products
,” Geoscience, Vancouver, BC, Canada.
62.
Resende
,
L. V.
, and
Morais
,
C. A.
,
2010
, “
Study of the Recovery of Rare Earth Elements From Computer Monitor Scraps—Leaching Experiments
,”
Miner. Eng.
,
23
(
3
), pp.
277
280
.
63.
Panda
,
R.
,
Kumari
,
A.
,
Jha
,
M. K.
,
Hait
,
J.
,
Kumar
,
V.
,
Rajesh Kumar
,
J.
, and
Lee
,
J. Y.
,
2014
, “
Leaching of Rare Earth Metals (REMs) From Korean Monazite Concentrate
,”
J. Ind. Eng. Chem.
,
20
(
4
), pp.
2035
2042
.
You do not currently have access to this content.