In this study, the ignition and combustion behavior of raw and heat-treated single particles of lignite were experimentally investigated, with a focus on the effect of heat treatment temperatures. The lignite particles were heat treated to various final temperatures (473, 623 and 773 K) in nitrogen and characterized using proximate, ultimate, and Fourier transform infrared spectroscopy (FTIR) analysis. A single lignite particle of 2 or 3 mm in diameter was suspended on a silicon carbide fiber and burned in air in a horizontal tube furnace operating at 1123 K. The ignition and combustion process of the particle was record using a color CCD camera at 25 fps. The ignition mechanism, ignition delay time, volatile flame duration, and burnout time of the single particles were examined by processing the recorded images. The proximate and ultimate analysis results indicated that the volatile matter and oxygen contents decreased, while the carbon content increased with increasing temperature of heat treatment. This trend was consistent with observations in the FTIR analysis, in which the intensity of oxygen-containing functional groups decreased with increasing the heat treatment temperature. The ignition of raw and heat treated lignite particles followed a joint hetero-homogeneous mechanism under all conditions studied. The ignition delay time, volatile flame extinction time, and the total combustion time decreased with increasing heat treatment temperature up to 623 K. A further increase in the heat treatment temperature to 773 K resulted in prolonged key ignition and combustion characteristic times.

References

References
1.
Zhu
,
Q.
,
2012
, “
Update on Lignite Firing
,” IEA Clean Coal Center, London, Report No. CCC/201.
2.
Yuan
,
Y.
,
Li
,
S.
, and
Yao
,
Q.
,
2015
, “
Dynamic Behavior of Sodium Release From Pulverized Coal Combustion by Phase-Selective Laser-Induced Breakdown Spectroscopy
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
2339
2346
.
3.
Zhou
,
B.
,
Zhou
,
H.
,
Wang
,
J.
, and
Cen
,
K.
,
2015
, “
Effect of Temperature on the Sintering Behavior of Zhundong Coal Ash in Oxy-Fuel Combustion Atmosphere
,”
Fuel
,
150
, pp.
526
537
.
4.
Li
,
G.
,
Wang
,
C. A.
,
Yan
,
Y.
,
Jin
,
X.
,
Liu
,
Y.
, and
Che
,
D.
,
2016
, “
Release and Transformation of Sodium During Combustion of Zhundong Coals
,”
J. Energy Inst.
,
89
(
1
), pp.
48
56
.
5.
Sujanti
,
W.
, and
Zhang
,
D.-K.
,
1999
, “
A Laboratory Study of Spontaneous Combustion of Coal: The Influence of Inorganic Matter and Reactor Size
,”
Fuel
,
78
(
5
), pp.
549
556
.
6.
Zhang
,
D. K.
, and
Sujanti
,
W.
,
1999
, “
The Effect of Exchangeable Cations on Low-Temperature Oxidation and Self-Heating of a Victorian Brown Coal
,”
Fuel
,
78
(
10
), pp.
1217
1224
.
7.
Sujanti
,
W.
, and
Zhang
,
D.-K.
,
2000
, “
Investigation Into the Role of Inherent Inorganic Matter and Additives in Low-Temperature Oxidation of a Victorian Brown Coal
,”
Combust. Sci. Technol.
,
152
(
1
), pp.
99
114
.
8.
Wang
,
G.
,
Liu
,
Q.
,
Sun
,
L.
,
Song
,
X.
,
Du
,
W.
,
Yan
,
D.
, and
Wang
,
Y.
,
2018
, “
Secondary Spontaneous Combustion Characteristics of Coal Based on Programed Temperature Experiments
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082204
.
9.
Xu
,
C.
,
Xu
,
G.
,
Zhao
,
S.
,
Zhou
,
L.
,
Yang
,
Y.
, and
Zhang
,
D.
,
2015
, “
An Improved Configuration of Lignite Pre-Drying Using a Supplementary Steam Cycle in a Lignite Fired Supercritical Power Plant
,”
Appl. Energy
,
160
, pp.
882
891
.
10.
Xu
,
C.
,
Xu
,
G.
,
Yang
,
Y.
,
Zhao
,
S.
,
Zhang
,
K.
, and
Zhang
,
D.
,
2015
, “
An Improved Configuration of Low-Temperature Pre-Drying Using Waste Heat Integrated in an Air-Cooled Lignite Fired Power Plant
,”
Appl. Therm. Eng.
,
90
, pp.
312
321
.
11.
Willson
,
W. G.
,
Walsh
,
D. A. N.
, and
Irwinc
,
W.
,
1997
, “
Overview of Low-Rank Coal (LRC) Drying
,”
Coal Prep.
,
18
(
1–2
), pp.
1
15
.
12.
Osman
,
H.
,
Jangam
,
S. V.
,
Lease
,
J. D.
, and
Mujumdar
,
A. S.
,
2011
, “
Drying of Low-Rank Coal (LRC)—A Review of Recent Patents and Innovations
,”
Drying Technol.
,
29
(
15
), pp.
1763
1783
.
13.
Yu
,
J.
,
Tahmasebi
,
A.
,
Han
,
Y.
,
Yin
,
F.
, and
Li
,
X.
,
2013
, “
A Review on Water in Low Rank Coals: The Existence, interaction With Coal Structure and Effects on Coal Utilization
,”
Fuel Process. Technol.
,
106
, pp.
9
20
.
14.
Zhang
,
X.-P.
,
Zhang
,
C.
,
Tan
,
P.
,
Li
,
X.
,
Fang
,
Q.-Y.
, and
Chen
,
G.
,
2018
, “
Effects of Hydrothermal Upgrading on the Physicochemical Structure and Gasification Characteristics of Zhundong Coal
,”
Fuel Process. Technol.
,
172
, pp.
200
208
.
15.
Li
,
X.
,
Song
,
H.
,
Wang
,
Q.
,
Meesri
,
C.
,
Wall
,
T.
, and
Yu
,
J.
,
2009
, “
Experimental Study on Drying and Moisture Re-Adsorption Kinetics of an Indonesian Low Rank Coal
,”
J. Environ. Sci.
,
21
, pp.
S127
S130
.
16.
Li
,
Q.
,
Wang
,
Z.
,
Lin
,
Z.
,
He
,
Y.
,
Zhang
,
K.
,
Kumar
,
S.
, and
Cen
,
K.
,
2018
, “
Effects of Hydrothermal Modification on Sulfur Release of Low-Quality Coals During Thermal Transformation Process
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072201
.
17.
Pawlak-Kruczek
,
H.
,
Lewtak
,
R.
,
Plutecki
,
Z.
,
Baranowski
,
M.
,
Ostrycharczyk
,
M.
,
Krochmalny
,
K.
,
Czerep
,
M.
,
Zgora
,
J.
, and
Niedzwiecki
,
L.
,
2018
, “
The Impact of Predried Lignite Cofiring With Hard Coal in an Industrial Scale Pulverized Coal Fired Boiler
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062207
.
18.
Kinoshita
,
C. M.
,
1988
, “
A Theoretical Analysis of Predrying of Solid Fuels With Flue Gas
,”
ASME J. Energy Resour. Technol.
,
110
(
2
), pp.
119
123
.
19.
Ge
,
L.
,
Zhang
,
Y.
,
Wang
,
Z.
,
Zhou
,
J.
, and
Cen
,
K.
,
2013
, “
Effects of Microwave Irradiation Treatment on Physicochemical Characteristics of Chinese Low-Rank Coals
,”
Energy Convers. Manage.
,
71
, pp.
84
91
.
20.
Ge
,
L.
,
Zhang
,
Y.
,
Xu
,
C.
,
Wang
,
Z.
,
Zhou
,
J.
, and
Cen
,
K.
,
2015
, “
Influence of the Hydrothermal Dewatering on the Combustion Characteristics of Chinese Low-Rank Coals
,”
Appl. Therm. Eng.
,
90
, pp.
174
181
.
21.
Ohki
,
A.
,
Xie
,
X.-F.
,
Inakajima
,
T.
,
Itahara
,
T.
, and
Maeda
,
S.
,
1999
, “
Change in Properties and Combustion Characteristics of an Indonesian Low-Rank Coal Due to Hydrothermal Treatment
,”
Coal Prep.
,
21
(
1
), pp.
23
34
.
22.
Meng
,
F.
,
Yu
,
J.
,
Tahmasebi
,
A.
,
Han
,
Y.
,
Zhao
,
H.
,
Lucas
,
J.
, and
Wall
,
T.
,
2014
, “
Characteristics of Chars From Low-Temperature Pyrolysis of Lignite
,”
Energy Fuels
,
28
(
1
), pp.
275
284
.
23.
Umar
,
D. F.
,
Usui
,
H.
, and
Daulay
,
B.
,
2006
, “
Change of Combustion Characteristics of Indonesian Low Rank Coal Due to Upgraded Brown Coal Process
,”
Fuel Process. Technol.
,
87
(
11
), pp.
1007
1011
.
24.
Umar
,
D. F.
,
Usui
,
H.
, and
Daulay
,
B.
,
2005
, “
Effects of Processing Temperature of Hot Water Drying on the Properties and Combustion Characteristics of an Indonesian Low Rank Coal
,”
Coal Prep.
,
25
(
4
), pp.
313
322
.
25.
Liu
,
B.
,
Zhang
,
Z.
,
Zhang
,
H.
,
Yang
,
H.
, and
Zhang
,
D.
,
2014
, “
An Experimental Investigation on the Effect of Convection on the Ignition Behaviour of Single Coal Particles Under Various O2 Concentrations
,”
Fuel
,
116
(
0
), pp.
77
83
.
26.
Zhang
,
Z.
,
Liu
,
B.
,
Zhu
,
M.
,
Zhang
,
H.
, and
Zhang
,
D.
,
2013
, “
Temperature Measurement of Large Single Coal Particles Prior to Ignition Using a Monochromatic Imaging Technique
,”
Australian Combustion Symposium
,
Perth, Australia
,
Nov. 6–8
, pp.
283
286
.
27.
Zhu
,
M.
,
Zhang
,
H.
,
Tang
,
G.
,
Liu
,
Q.
,
Lu
,
J.
,
Yue
,
G.
,
Wang
,
S.
, and
Wan
,
S.
,
2009
, “
Ignition of Single Coal Particle in a Hot Furnace Under Normal- and Micro-Gravity Condition
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2029
2035
.
28.
Zhang
,
Z.
,
Zhu
,
M.
,
Li
,
J.
,
Zhang
,
K.
,
Xu
,
G.
, and
Zhang
,
D.
,
2017
, “
Experimental Study of Ignition and Combustion Characteristics of Single Particles of Zhundong Lignite
,”
Energy Fuels
,
32
(
4
), pp.
4221
4226
.
29.
Zhang
,
Z.
,
Zhu
,
M.
,
Zhang
,
Y.
,
Setyawan
,
H. Y.
,
Li
,
J.
, and
Zhang
,
D.
,
2017
, “
Ignition and Combustion Characteristics of Single Particles of Zhundong Lignite: Effect of Water and Acid Washing
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2139
2146
.
30.
Ross
,
D. P.
,
Heidenreich
,
C. A.
, and
Zhang
,
D. K.
,
2000
, “
Devolatilisation Times of Coal Particles in a Fluidised-Bed
,”
Fuel
,
79
(
8
), pp.
873
883
.
31.
Zhu
,
M.
,
Zhang
,
Z.
,
Liu
,
P.
, and
Zhang
,
D.
,
2018
, “
Rheological Properties and Ignition and Combustion Characteristics of Biochar–Algae–Water Slurry Fuels
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062203
.
32.
Jüntgen
,
H.
, and
Van Heek
,
K. H.
,
1979
, “
An Update of German Non-Isothermal Coal Pyrolysis Work
,”
Fuel Process. Technol.
,
2
(
4
), pp.
261
293
.
33.
Zhang
,
D.
,
Wall
,
T. F.
, and
Hills
,
P. C.
,
1994
, “
The Ignition of Single Pulverized Coal Particles: Minimum Laser Power Required
,”
Fuel
,
73
(
5
), pp.
647
655
.
34.
Essenhigh
,
R. H.
,
Misra
,
M. K.
, and
Shaw
,
D. W.
,
1989
, “
Ignition of Coal Particles: A Review
,”
Combust. Flame
,
77
(
1
), pp.
3
30
.
35.
Taniguchi
,
M.
,
Okazaki
,
H.
,
Kobayashi
,
H.
,
Azuhata
,
S.
,
Miyadera
,
H.
,
Muto
,
H.
, and
Tsumura
,
T.
,
2000
, “
Pyrolysis and Ignition Characteristics of Pulverized Coal Particles
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
32
38
.
36.
Zhang
,
D.
,
1992
, “
Laser-Induced Ignition of Pulverized Fuel Particles
,”
Combust. Flame
,
90
(
2
), pp.
134
142
.
37.
Takagi
,
H.
,
Isoda
,
T.
,
Kusakabe
,
K.
, and
Morooka
,
S.
,
2000
, “
Relationship Between Pyrolysis Reactivity and Aromatic Structure of Coal
,”
Energy Fuels
,
14
(
3
), pp.
646
653
.
38.
Painter
,
P. C.
,
Starsinic
,
M.
, and
Coleman
,
M. M.
,
2012
, “
Determination of Functional Groups in Coal by Fourier Transform Interferometry
,”
Fourier Transform Infrared Spectra: Applications to Chemical Systems
, Academic Press, Inc., Orlando, FL.
39.
Chen
,
Y.
,
Mastalerz
,
M.
, and
Schimmelmann
,
A.
,
2012
, “
Characterization of Chemical Functional Groups in Macerals Across Different Coal Ranks Via Micro-FTIR Spectroscopy
,”
Int. J. Coal Geol.
,
104
(
Suppl. C
), pp.
22
33
.
40.
Coates
,
J.
,
2006
, “
Interpretation of Infrared Spectra, A Practical Approach
,”
Encyclopedia of Analytical Chemistry
,
Wiley, Ltd
, Chichester, UK.
41.
Wang
,
C. A.
,
Jin
,
X.
,
Wang
,
Y.
,
Yan
,
Y.
,
Cui
,
J.
,
Liu
,
Y.
, and
Che
,
D.
,
2015
, “
Release and Transformation of Sodium During Pyrolysis of Zhundong Coals
,”
Energy Fuels
,
29
(
1
), pp.
78
85
.
42.
Li
,
X.
,
Bai
,
Z.-Q.
,
Bai
,
J.
,
Han
,
Y.-N.
,
Kong
,
L.-X.
, and
Li
,
W.
,
2015
, “
Transformations and Roles of Sodium Species With Different Occurrence Modes in Direct Liquefaction of Zhundong Coal From Xinjiang, Northwestern China
,”
Energy Fuels
,
29
(
9
), pp.
5633
5639
.
43.
Marek
,
E.
, and
Świątkowski
,
B.
,
2015
, “
Reprint of “Experimental Studies of Single Particle Combustion in Air and Different Oxy-Fuel Atmospheres”
,”
Appl. Therm. Eng.
,
74
, pp.
61
68
.
44.
Bu
,
C.
,
Liu
,
D.
,
Chen
,
X.
,
Pallarès
,
D.
, and
Gómez-Barea
,
A.
,
2014
, “
Ignition Behavior of Single Coal Particle in a Fluidized Bed Under O2/CO2 and O2/N2 Atmospheres: A Combination of Visual Image and Particle Temperature
,”
Appl. Energy
,
115
, pp.
301
308
.
45.
Li
,
C. Z.
,
Sathe
,
C.
,
Kershaw
,
J. R.
, and
Pang
,
Y.
,
2000
, “
Fates and Roles of Alkali and Alkaline Earth Metals During the Pyrolysis of a Victorian Brown Coal
,”
Fuel
,
79
(
3–4
), pp.
427
438
.
46.
van Eyk
,
P.
,
Ashman
,
P.
, and
Nathan
,
G.
,
2011
, “
Mechanism and Kinetics of Sodium Release From Brown Coal Char Particles During Combustion
,”
Combust. Flame
,
158
(
12
), pp.
2512
2523
.
47.
Tang
,
H.
,
Xu
,
J.
,
Dai
,
Z.
,
Zhang
,
L.
,
Sun
,
Y.
,
Liu
,
W.
,
Mostafa
,
M. E.
,
Su
,
S.
,
Hu
,
S.
,
Wang
,
Y.
,
Xu
,
K.
,
Zhang
,
A.
, and
Xiang
,
J.
,
2017
, “
Functional Mechanism of Inorganic Sodium on the Structure and Reactivity of Zhundong Chars During Pyrolysis
,”
Energy Fuels
,
31
(
10
), pp.
10812
10821
.
48.
Li
,
R.
,
Chen
,
Q.
, and
Zhang
,
H.
,
2017
, “
Detailed Investigation on Sodium (Na) Species Release and Transformation Mechanism During Pyrolysis and Char Gasification of High-Na Zhundong Coal
,”
Energy Fuels
,
31
(
6
), pp.
5902
5912
.
You do not currently have access to this content.