Ammonia (NH3) is an excellent hydrogen (H2) carrier that is easy to bulk manufacture, handle, transport, and use. NH3 is itself combustible and could potentially become a clean transport fuel for direct use in internal combustion engines (ICEs). This technical review examines the current state of knowledge of NH3 as a fuel in ICEs on its own or in mixtures with other fuels. A particular case of interest is to partially dissociate NH3 in situ to produce an NH3/H2 mixture before injection into the engine cylinders. A key element of the present innovation, the presence of H2 is expected to allow easy control and enhanced performance of NH3 combustion. The key thermochemical properties of NH3 are collected and compared to those of conventional and alternative fuels. The basic combustion characteristics and properties of NH3 and its mixtures with H2 are summarized, providing a theoretical basis for evaluating NH3 combustion in ICEs. The combustion chemistry and kinetics of NH3 combustion and mechanisms of NOx formation and destruction are also discussed. The potential applications of NH3 in conventional ICEs and advanced homogenous charge compression ignition (HCCI) engines are analyzed.

References

References
1.
National Research Council,
2013
,
Transitions to Alternative Vehicles and Fuels
, National Academic Press, Washington, DC.
2.
Ball
,
M.
, and
Weeda
,
M.
,
2015
, “
The Hydrogen Economy—Vision or Reality?
,”
Int. J. Hydrogen Energy
,
40
(
25
), pp.
7903
7919
.
3.
Kreith
,
A. H. M. F.
, and
West
,
R.
,
2004
, “
Fallacies of a Hydrogen Economy: A Critical Analysis of Hydrogen Production and Utilization
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
249
257
.
4.
Berry
,
G. D.
, and
Aceves
,
S. M.
,
2005
, “
The Case for Hydrogen in a Carbon Constrained World
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
89
94
.
5.
Barreto
,
L.
,
Makihira
,
A.
, and
Riahi
,
K.
,
2003
, “
The Hydrogen Economy in the 21st Century: A Sustainable Development Scenario
,”
Int. J. Hydrogen Energy
,
28
(
3
), pp.
267
284
.
6.
Tachibana
,
Y.
,
Vayssieres
,
L.
, and
Durrant
,
J. R.
,
2012
, “
Artificial Photosynthesis for Solar Water-Splitting
,”
Nat. Photonics
,
6
(
8
), pp.
511
518
.
7.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2009
, “
Ammonia as a Green Fuel and Hydrogen Source for Vehicular Applications
,”
Fuel Process Technol.
,
90
(
5
), p.
729
.
8.
Xiang
,
H. W.
,
2004
, “
Vapor Pressures, Critical Parameters, Boiling Points, and Triple Points of Ammonia and Trideuteroammonia
,”
J. Phys. Chem. Ref. Data
,
33
(
4
), pp.
1005
1011
.
9.
Avery
,
W. H.
,
1988
, “
A Role for Ammonia in the Hydrogen Economy
,”
Int. J. Hydrogen Energy
,
13
(
12
), pp.
761
773
.
10.
Cornelius
,
W.
,
Huellmantel
,
L. W.
, and
Mitchell
,
H. R.
,
1965
, “
Ammonia as an Engine Fuel
,”
SAE
Paper No. 650052.
11.
Gray
,
J. T.
, Jr.
,
Dimitroff
,
E.
,
Meckel
,
N. T.
, and
Quillian
,
N. T.
, Jr.
,
1966
, “
Ammonia Fuel—Engine Compatibility and Combustion
,”
SAE
Paper No. 660156.
12.
Starkman
,
E.
,
Newhall
,
H.
,
Sutton
,
R.
, and
Maguire
,
T.
,
1966
, “
Ammonia as a Spark Ignition Engine Fuel: Theory and Application
,”
SAE
Paper No. 660155
.
13.
Pearsall
,
T. J.
, and
Garabedian
,
C. G.
,
1967
, “
Combustion of Anhydrous Ammonia in Diesel Engines
,”
SAE
Paper No. 670947
.
14.
Starkman
,
E. S.
,
James
,
G. E.
, and
Newhall
,
H. K.
,
1967
, “
Ammonia as a Diesel Engine Fuel: Theory and Application
,”
SAE
Paper No. 670946.
15.
Faehn
,
D.
,
Bull
,
M. G.
, and
Shekleton
,
J. R.
,
1966
, “
Experimental Investigation of Ammonia as a Gas Turbine Engine Fuel
,”
SAE
Paper No. 660769
.
16.
Newhall
,
H. K.
, and
Starkman
,
E. S.
,
1966
, “
Theoretical Performance of Ammonia as a Gas Turbine Fuel
,”
SAE
Paper No. 660768.
17.
Pratt
,
D. T.
, and
Starkman
,
E. S.
,
1967
, “
Gas Turbine Combustion of Ammonia
,”
SAE
Paper No. 670938
.
18.
Verkamp
,
F. J.
,
Hardin
,
M. C.
, and
Williams
,
J. R.
,
1967
, “
Ammonia Combustion Properties and Performance in Gas-Turbine Burners
,”
Symp. (Int.) Combust.
,
11
(
1
), pp.
985
992
.
19.
Rosenthal
,
A. B.
,
1965
, “
Energy Depot—A Concept for Reducing the Military Supply Burden
,”
SAE
Paper No. 650050
.
20.
Grimes
,
P. G.
,
1965
, “
Energy Depot Fuel Production and Utilization
,”
SAE paper No. 650051
.
21.
Liu
,
R.
,
Ting
,
D. S. K.
, and
Checkel
,
M. D.
,
2003
, “
Ammonia as a Fuel for SI Engine
,”
SAE
Paper No. 2003-01-3095
.
22.
Grannell
,
S. M.
,
Assanis
,
D. N.
,
Bohac
,
S. V.
, and
Gillespie
,
D. E.
,
2008
, “
The Fuel Mix Limits and Efficiency of a Stoichiometric, ammonia, and Gasoline Dual Fueled Spark Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
42802
.
23.
Mørch
,
C. S.
,
Bjerre
,
A.
,
Gøttrup
,
M. P.
,
Sorenson
,
S. C.
, and
Schramm
,
J.
,
2011
, “
Ammonia/Hydrogen Mixtures in an SI-Engine: Engine Performance and Analysis of a Proposed Fuel System
,”
Fuel
,
90
(
2
), pp.
854
864
.
24.
Frigo
,
S.
, and
Gentili
,
R.
,
2012
, “
Analysis of the Behaviour of a 4-Stroke Si Engine Fuelled With Ammonia and Hydrogen
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1607
1615
.
25.
Frigo
,
S.
,
Gentili
,
R.
, and
Doveri
,
N.
,
2012
, “
Ammonia Plus Hydrogen as Fuel in a S.I. Engine: Experimental Results
,”
SAE
Paper No. 2012-32-0019
.
26.
Pozzana
,
G.
,
Bonfanti
,
N.
,
Frigo
,
S.
,
Doveri
,
N.
,
Dario
,
P.
,
Mattoli
,
V.
, and
Ragnoli
,
M.
,
2012
, “
A Hybrid Vehicle Powered by Hydrogen and Ammonia
,”
SAE
Paper No. 2012-32-0085
.
27.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.
28.
Frigo
,
S.
,
Gentili
,
R.
, and
De Angelis
,
F.
,
2014
, “
Further Insight Into the Possibility to Fuel a SI Engine With Ammonia Plus Hydrogen
,”
SAE
Paper No. 2014-32-0082
.
29.
Ryu
,
K.
,
Zacharakis-Jutz
,
G. E.
, and
Kong
,
S.-C.
,
2014
, “
Performance Enhancement of Ammonia-Fueled Engine by Using Dissociation Catalyst for Hydrogen Generation
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2390
2398
.
30.
Ryu
,
K.
,
Zacharakis-Jutz
,
G. E.
, and
Kong
,
S.-C.
,
2014
, “
Effects of Gaseous Ammonia Direct Injection on Performance Characteristics of a Spark-Ignition Engine
,”
Appl. Energy
,
116
(
Suppl. C
), pp.
206
215
.
31.
Comotti
,
M.
, and
Frigo
,
S.
,
2015
, “
Hydrogen Generation System for Ammonia–Hydrogen Fuelled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10673
10686
.
32.
Koike
,
M.
,
Miyagawa
,
H.
,
Suzuoki
,
T.
, and
Ogasawara
,
K.
, 2016, “
Ammonia as a Hydrogen Energy Carrier and Its Application to Internal Combustion Engines
,”
J. Combust. Soc. Jpn.
,
58
(184), pp. 99–106.
33.
Reiter
,
A. J.
, and
Kong
,
S. C.
,
2008
, “
Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions
,”
Energy Fuels
,
22
(
5
), pp.
2963
2971
.
34.
Reiter
,
A. J.
, and
Kong
,
S.-C.
,
2011
, “
Combustion and Emissions Characteristics of Compression-Ignition Engine Using Dual Ammonia-Diesel Fuel
,”
Fuel
,
90
(
1
), pp.
87
97
.
35.
Gross
,
C. W.
, and
Kong
,
S.-C.
,
2013
, “
Performance Characteristics of a Compression-Ignition Engine Using Direct-Injection Ammonia–DME Mixtures
,”
Fuel
,
103
, pp.
1069
1079
.
36.
Ryu
,
K.
,
Zacharakis-Jutz
,
G. E.
, and
Kong
,
S.-C.
,
2014
, “
Performance Characteristics of Compression-Ignition Engine Using High Concentration of Ammonia Mixed With Dimethyl Ether
,”
Appl. Energy
,
113
, pp.
488
499
.
37.
Boretti
,
A.
,
2017
, “
Novel Dual Fuel Diesel-Ammonia Combustion System in Advanced TDI Engines
,”
Int. J. Hydrogen Energy
,
42
(
10
), pp.
7071
7076
.
38.
Boretti
,
A. A.
,
2012
, “
Novel Heavy Duty Engine Concept for Operation Dual Fuel H2–NH3
,”
Int. J. Hydrogen Energy
,
37
(
9
), pp.
7869
7876
.
39.
Gill
,
S. S.
,
Chatha
,
G. S.
,
Tsolakis
,
A.
,
Golunski
,
S. E.
, and
York
,
A. P. E.
,
2012
, “
Assessing the Effects of Partially Decarbonising a Diesel Engine by Co-Fuelling With Dissociated Ammonia
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6074
6083
.
40.
Lamas
,
M. I.
, and
Rodriguez
,
C. G.
,
2017
, “
Numerical Model to Analyze Nox Reduction by Ammonia Injection in Diesel-Hydrogen Engines
,”
Int. J. Hydrogen Energy
,
42
(
41
), pp.
26132
26141
.
41.
Xiao
,
H.
,
Howard
,
M.
,
Valera-Medina
,
A.
,
Dooley
,
S.
, and
Bowen
,
P.
,
2016
, “
Study on Reduced Chemical Mechanisms of Ammonia/Methane Combustion Under Gas Turbine Conditions
,”
Energy Fuel
,
30
(
10
), pp.
8701
8710
.
42.
Hayakawa
,
A.
,
Arakawa
,
Y.
,
Mimoto
,
R.
,
Somarathne
,
K. D. K. A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2017
, “
Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/air Premixed Flames in a Swirl Combustor
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
14010
14018
.
43.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3–Air and NH3-CH4–Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.
44.
Somarathne
,
K. D. K. A.
,
Hatakeyama
,
S.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2017
, “
Numerical Study of a Low Emission Gas Turbine Like Combustor for Turbulent Ammonia/air Premixed Swirl Flames With a Secondary Air Injection at High Pressure
,”
Int. J. Hydrogen Energy
,
42
(
44
), pp.
27388
27399
.
45.
Valera-Medina
,
A.
,
Pugh
,
D. G.
,
Marsh
,
P.
,
Bulat
,
G.
, and
Bowen
,
P.
,
2017
, “
Preliminary Study on Lean Premixed Combustion of Ammonia-Hydrogen for Swirling Gas Turbine Combustors
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24495
24503
.
46.
Xiao
,
H.
, and
Valera-Medina
,
A.
,
2017
, “
Chemical Kinetic Mechanism Study on Premixed Combustion of Ammonia/Hydrogen Fuels for Gas Turbine Use
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
081504
.
47.
Haputhanthri
,
S. O.
,
Maxwell
,
T. T.
,
Fleming
,
J.
, and
Austin
,
C.
,
2015
, “
Ammonia and Gasoline Fuel Blends for Spark Ignited Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062201
.
48.
Nielsen
,
A. E.
,
1995
,
Ammonia: Catalysis and Manufacture
,
Springer-Verlag
,
Berlin
.
49.
Appl
,
M.
,
2007
,
Ammonia: Principles and Industrial Practice
,
Wiley‐VCH Verlag GmbH
,
Weinheim, Germany
.
50.
Astbury
,
G. R.
,
2008
, “
A Review of the Properties and Hazards of Some Alternative Fuels
,”
Process Saf. Environ. Prot.
,
86
(
6
), pp.
397
414
.
51.
Goodger
,
E. M.
,
1980
,
Alternative Fuels: Chemical Energy Resources
,
The Macmillan Press
, London.
52.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.
53.
Lee
,
J. H.
,
Kim
,
J. H.
,
Park
,
J. H.
, and
Kwon
,
O. C.
,
2010
, “
Studies on Properties of Laminar Premixed Hydrogen-Added Ammonia/air Flames for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
1054
1064
.
54.
Heywood
,
J. B.
,
1981
, “
Automotive Engines and Fuels: A Review of Future Options
,”
Prog. Energy Combust.
,
7
(
3
), pp.
155
184
.
55.
NASA
,
1997
, “
Safety Standard for Hydrogen and Hydrogen Systems, Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation
,” Office of Safety and Mission Assurance, Washington DC, Report No. NAS 1.26:205487.
56.
Rose
,
J. W.
, and
Cooper
,
J. R.
,
1977
,
Technical Data on Fuel
,
British National Committee
, London.
57.
Arcoumanis
,
C.
,
Bae
,
C.
,
Crookes
,
R.
, and
Kinoshita
,
E.
,
2008
, “
The Potential of Di-Methyl Ether (DME) as an Alternative Fuel for Compression-Ignition Engines: A Review
,”
Fuel
,
87
(
7
), pp.
1014
1030
.
58.
Zabetakis
,
M. G.
,
1965
, Flammability Characteristics of Combustible Gases and Vapors, U.S. Department of the Interior, Bureau of Mines Bulletin 627.
59.
Setchkin
,
N. P.
,
1954
, “
Self-Ignition Temperatures of Combustible Liquids
,”
J. Res. Natl. Bureau Standards
,
53
(
1
), p.
49
.
60.
Kuchta
,
J. M.
,
1985
,
Investigation of Fire and Explosion Accidents in the Chemical, Mining, and Fuel-Related Industries—A Manual
, U.S. Department of the Interior, Bureau of Mines Bulletin 680, Washington DC.
61.
Bae
,
C.
, and
Kim
,
J.
,
2017
, “
Alternative Fuels for Internal Combustion Engines
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3389
3413
.
62.
Goodger
,
E. M.
,
1982
, “
Liquid Fuels for Transport
,”
Prog. Energy Combust.
,
8
(
3
), pp.
233
260
.
63.
Haar
,
L.
, and
Gallagher
,
J. S.
,
1978
, “
Thermodynamic Properties of Ammonia
,”
J. Phys. Chem. Ref. Data
,
7
(
3
), pp.
635
792
.
64.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
65.
Ciccarelli
,
G.
,
Jackson
,
D.
, and
Verreault
,
J.
,
2006
, “
Flammability Limits of NH 3–H 2–N 2–Air Mixtures at Elevated Initial Temperatures
,”
Combust Flame
,
144
(
1–2
), pp.
53
63
.
66.
Gray
,
P.
,
Mackinven
,
R.
, and
Smith
,
D. B.
,
1967
, “
Combustion of Hydrogen and Oxygen With Ammonia and Nitrous Oxide—Laminar Flame Speeds and Flammability Limits at Low Pressure for Ternary Mixtures
,”
Combust Flame
,
11
(
2
), pp.
109
119
.
67.
Han
,
J.
,
Yamashita
,
H.
, and
Hayashi
,
N.
,
2011
, “
Numerical Study on the Spark Ignition Characteristics of Hydrogen–Air Mixture Using Detailed Chemical Kinetics
,”
Int. J. Hydrogen Energy
,
36
(
15
), pp.
9286
9297
.
68.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
He
,
Z.
, and
Nagai
,
Y.
,
2014
, “
Study on Using Hydrogen and Ammonia as Fuels: Combustion Characteristics and NOx Formation
,”
Int. J. Energy Res.
,
38
(
9
), pp.
1214
1223
.
69.
Henshaw
,
P. F.
,
D'Andrea
,
T.
,
Mann
,
K. R. C.
, and
Ting
,
D. S. K.
,
2005
, “
Premixed Ammonia-Methane-Air Combustion
,”
Combust. Sci. Technol.
,
177
(
11
), pp.
2151
2170
.
70.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
Wang
,
C.
, and
Yuan
,
H.
,
2017
, “
Numerical Study on Laminar Burning Velocity and Ignition Delay Time of Ammonia Flame With Hydrogen Addition
,”
Energy
,
126
, pp.
796
809
.
71.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
New York
.
72.
Song
,
Y.
,
Hashemi
,
H.
,
Christensen
,
J. M.
,
Zou
,
C.
,
Marshall
,
P.
, and
Glarborg
,
P.
,
2016
, “
Ammonia Oxidation at High Pressure and Intermediate Temperatures
,”
Fuel
,
181
, pp.
358
365
.
73.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.
74.
Takagi
,
Y.
,
1998
, “
A New Era in Spark-Ignition Engines Featuring High-Pressure Direct Injection
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
2055
2068
.
75.
Takagi
,
Y.
,
Mori
,
H.
,
Mihara
,
Y.
,
Kawahara
,
N.
, and
Tomita
,
E.
,
2017
, “
Improvement of Thermal Efficiency and Reduction of NOx Emissions by Burning a Controlled Jet Plume in High-Pressure Direct-Injection Hydrogen Engines
,”
Int. J. Hydrogen Energy
,
42
(
41
), pp.
26114
26122
.
76.
Duijm
,
N. J.
,
Markert
,
F.
, and
Paulsen
,
J. L.
,
2005
,
Safety Assessment of Ammonia as a Transport Fuel
,
Risø National Laboratory
,
Roskilde, Denmark
.
77.
Ferguson
,
C. R.
,
2016
,
Internal Combustion Engines: Applied Thermosciences
,
Wiley
, Chichester, UK.
78.
Sarofim
,
A. F.
, and
Flagan
,
R. C.
,
1976
, “
NOx Control for Stationary Combustion Sources
,”
Prog. Energy Combust.
,
2
(
1
), pp.
1
25
.
79.
Miller
,
J. A.
,
Smooke
,
M. D.
,
Green
,
R. M.
, and
Kee
,
R. J.
,
1983
, “
Kinetic Modeling of the Oxidation of Ammonia in Flames
,”
Combust. Sci. Technol.
,
34
(
1–6
), pp.
149
176
.
80.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust.
,
15
(
4
), pp.
287
338
.
81.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust Flame
,
162
(
3
), pp.
554
570
.
82.
Bian
,
J.
,
Vandooren
,
J.
, and
Van Tiggelen
,
P.
,
1991
, “
Experimental Study of the Formation of the Nitrous and Nitric Oxides in H2-O2-Ar Flames Seeded With NO and/or NH3
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
379
386
.
83.
Lindstedt
,
R. P.
,
Lockwood
,
F. C.
, and
Selim
,
M. A.
,
1994
, “
Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation
,”
Combust. Sci. Technol.
,
99
(
4–6
), pp.
253
276
.
84.
Konnov
,
A. A.
, and
Ruyck
,
J. D.
,
2000
, “
Kinetic Modeling of the Thermal Decomposition of Ammonia
,”
Combust. Sci. Technol.
,
152
(
1
), pp.
23
37
.
85.
Ichikawa
,
A.
,
Hayakawa
,
A.
,
Kitagawa
,
Y.
,
Kunkuma Amila Somarathne
,
K. D.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Hydrogen/Air Premixed Flames at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
40
(
30
), pp.
9570
9578
.
86.
Dagaut
,
P.
,
Glarborg
,
P.
, and
Alzueta
,
M. U.
,
2008
, “
The Oxidation of Hydrogen Cyanide and Related Chemistry
,”
Prog. Energy Combust.
,
34
(
1
), pp.
1
46
.
87.
Kumar
,
P.
, and
Meyer
,
T. R.
,
2013
, “
Experimental and Modeling Study of Chemical-Kinetics Mechanisms for H2–NH3–Air Mixtures in Laminar Premixed Jet Flames
,”
Fuel
,
108
, pp.
166
176
.
88.
Ogidiama
,
O. V.
, and
Shamim
,
T.
,
2018
, “
A Computational Investigation of Industrial Selective Catalytic Reduction Systems for NOx Control
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082202
.
89.
Dean
,
J. A.
, and
Lange
,
N. A.
,
1999
,
Lange's Handbook of Chemistry
,
McGraw-Hill
, New York.
90.
Vandebroek
,
L.
,
Verplaetsen
,
F.
,
Berghmans
,
J.
,
van den Aarssen
,
A.
,
Winter
,
H.
,
Vliegen
,
G.
, and
van 't Oost
,
E.
,
2002
, “
Auto-Ignition Hazard of Mixtures of Ammonia, Hydrogen, Methane and Air in a Urea Plant
,”
J. Hazard Mater.
,
93
(
1
), pp.
123
136
.
91.
Blarigan
,
P. V.
,
2000
, “
Advanced Internal Combustion Engine Research
,”
DOE Hydrogen Program Review
,
San Ramon, CA
,
May 9–11
, pp.
639
657
.
92.
Lee
,
K. J.
,
Kim
,
Y. R.
,
Byun
,
C. H.
, and
Lee
,
J. T.
,
2013
, “
Feasibility of Compression Ignition for Hydrogen Fueled Engine With Neat Hydrogen-Air Pre-Mixture by Using High Compression
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
255
264
.
You do not currently have access to this content.