Radial fractures are created in unconventional gas and oil reservoirs in modern well stimulation operations such as hydraulic refracturing (HRF), explosive fracturing (EF), and high energy gas fracturing (HEGF). This paper presents a mathematical model to describe fluid flow from reservoir through radial fractures to wellbore. The model can be applied to analyzing angles between radial fractures. Field case studies were carried out with the model using pressure transient data from three typical HRF wells in a lower-permeability reservoir. The studies show a good correlation between observed well performance and model-interpreted fracture angle. The well with the highest productivity improvement by the HRF corresponds to the interpreted perpendicular fractures, while the well with the lowest productivity improvement corresponds to the interpreted conditions where the second fracture is much shorter than the first one or where there created two merged/parallel fractures. Result of the case studies of a tight sand reservoir supports the analytical model.

References

References
1.
Roussel
,
N. P.
, and
Sharma
,
M. M.
,
2010
, “
Quantifying Transient Effects in Altered-Stress Refracturing of Vertical Wells
,”
SPE J.
,
15
(
3
), pp.
770
782
.
2.
Strother
,
D.
,
Valadares
,
R.
,
Nakhwa
,
A. D.
, and
Pitcher
,
J. L.
,
2013
, “
Challenges of Refracturing Horizontal Wells in Unconventional and Tight Reservoirs
,”
SPE Unconventional Resources Conference and Exhibition-Asia Pacific
,
Brisbane, Australia
,
Nov. 11–13
, SPE Paper No.
SPE-167000-MS
.
3.
Khusainov
,
R.
,
Ganiev
,
B.
,
Karimova
,
A.
, and
Karpova
,
O.
,
2014
, “
Refracturing Is the Best Way to Develop Hard-to-Recover Reserves in Romashkino Oilfield Conditions
,”
SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition
,
Moscow, Russia
,
Oct. 14–16
, SPE Paper No.
SPE-171155-RU
.
4.
Urban
,
E.
,
Orozco
,
D.
,
Fragoso
,
A.
,
Selvan
,
K.
, and
Aguilera
,
R.
,
2016
, “
Refracturing vs. Infill Drilling—A Cost Effective Approach to Enhancing Recovery in Shale Reservoirs
,”
Unconventional Resources Technology Conference
, San Antonio, TX, Aug. 1–3, pp. 2934–2953.https://library.seg.org/doi/abs/10.15530/urtec-2016-2461604
5.
Zhang
,
F.
, and
Mack
,
M.
,
2017
, “
Integrating Fully Coupled Geomechanical Modeling With Microsesmicity for the Analysis of Refracturing Treatment
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
16
25
.
6.
Waters
,
G.
,
Ramakrishnan
,
H.
,
Daniels
,
J.
,
Bentley
,
D.
,
Belhadi
,
J.
, and
Sparkman
,
D.
,
2009
, “
Utilization of Real Time Microseismic Monitoring and Hydraulic Fracture Diversion Technology in the Completion of Barnett Shale Horizontal Wells
,”
Offshore Technology Conference
, Houston, TX, May 4–7, Paper No. OTC-20268-MS.
7.
Siebrits
,
E.
,
Elbel
,
J. L.
,
Hoover
,
R. S.
,
Diyashev
,
I. R.
,
Griffin
,
L. G.
,
Demetrius
,
S. L.
,
Wright
,
C. A.
,
Davidson
,
B. M.
,
Steinsberger
,
N. P.
, and
Hill
,
D. G.
,
2000
, “
Refracture Reorientation Enhances Gas Production in Barnett Shale Tight Gas Wells
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 1–4
, SPE Paper No.
SPE-63030-MS
.
8.
Zhai
,
Z.
, and
Sharma
,
M. M.
,
2007
, “
Estimating Fracture Reorientation Owing to Long Term Fluid Injection/Production
,”
Production and Operations Symposium
,
Oklahoma City, OK
,
Mar. 31–Apr. 3
, SPE Paper No.
SPE-106387-MS
.
9.
Rongved
,
M.
,
Holt
,
R. M.
,
Bauer
,
A.
, and
Larsen
,
I.
,
2017
, “
Numerical Simulations of Fracture Reorientation in the Vicinity of a Producer
,”
51st U.S. Rock Mechanics/Geomechanics Symposium
, San Francisco, CA, June 25–28, Paper No. ARMA-2017-0715.https://www.onepetro.org/conference-paper/ARMA-2017-0715
10.
Wang
,
S.
,
Zhang
,
G.
,
He
,
X.
,
Liu
,
X.
,
Hou
,
F.
, and
Cui
,
T.
,
2007
, “
Case Studies of Propped Refracture Reorientation in the Daqing Oil Field
,”
SPE Hydraulic Fracturing Technology Conference
,
College Station, TX
,
Jan. 29–31
, SPE Paper No.
SPE-106140-MS
.
11.
Wolhart
,
S. L.
,
McIntosh
,
G. E.
,
Zoll
,
M. B.
, and
Weijers
,
L.
,
2007
, “
Surface Tiltmeter Mapping Shows Hydraulic Fracture Reorientation in the Codell Formation
,”
SPE Annual Technical Conference and Exhibition
,
Anaheim, CA
,
Nov. 11–14
, SPE Paper No.
SPE-110034-MS
.
12.
Siebrits
,
E.
,
Elbel
,
J. L.
,
Detournay
,
E.
,
Detournay-Piette
,
C.
,
Christianson
,
M.
,
Robinson
,
B. M.
, and
Diyashev
,
I. R.
,
1998
, “
Parameters Affecting Azimuth and Length of a Secondary Fracture During a Refracture Treatment
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 27–30
, SPE Paper No.
SPE-48928-MS
.
13.
Wright
,
C. A.
,
Conant
,
R. A.
,
Golich
,
G. M.
,
Bondor
,
P. L.
,
Murer
,
A. S.
, and
Dobie
,
C. A.
,
1995
, “
Hydraulic Fracture Orientation and Production/Injection Induced Reservoir Stress Changes in Diatomite Waterfloods
,”
SPE Western Regional Meeting
,
Bakersfield, CA
,
Mar. 8–10
, SPE Paper No.
SPE-29625-MS
.
14.
Yao
,
F.
,
Weng
,
D.
,
Li
,
Y.
,
Yu
,
Y.
, and
Hou
,
F.
,
2007
, “
Reorientation Refracturing Case Study
,”
Production and Operations Symposium
,
Oklahoma City, OK
,
Mar. 31–Apr. 3
, SPE Paper No.
SPE-106595-MS
.
15.
Roussel
,
N. P.
, and
Sharma
,
M. M.
,
2013
, “
Selecting Candidate Wells for Refracturing Using Production Data
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 30–Nov. 2
, SPE Paper No.
SPE-146103-MS
.
16.
Plata
,
M.
J.,
Castillo
,
R. D.
, and
Mendoza
,
S. A.
,
2012
, “
High Energy Gas Fracturing: A Technique of Hydraulic Prefracturing to Reduce the Pressure Losses by Friction in the Near Wellbore—A Colombian Field Application
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
,
Mexico City, Mexico
,
Apr. 16–18
, SPE Paper No.
SPE-152886-MS
.
17.
Levey
,
D.
,
1967
, “
Explosive Stimulation Report
,” The Western Company Publication, Report.
18.
Guo
,
B.
,
Shan
,
J.
, and
Feng
,
Y.
,
2014
, “
Productivity of Blast-Fractured Wells in Liquid-Rich Shale Gas Formations
,”
J. Nat. Gas Sci. Eng.
,
18
, pp.
360
367
.
19.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
20.
Jiang
,
Y.
, and
Dahi-Taleghani
,
A.
,
2018
, “
Modified Extended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
073101
.
21.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
.
22.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Li
,
H. A.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
.
23.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2016
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
24.
Wang
,
W.
,
Shahvali
,
M.
, and
Su
,
Y.
,
2016
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012905
.
25.
Gao
,
Q.
,
Cheng
,
Y.
,
Yan
,
C.
,
Jiang
,
L.
, and
Han
,
S.
,
2018
, “
Initiation Pressure and Corresponding Initiation Mode of Drilling Induced Fracture in Pressure Depleted Reservoir
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012901
.
26.
Taleghani
,
A. D.
, and
Klimenko
,
D.
,
2015
, “
An Analytical Solution for Microannulus Cracks Developed Around a Wellbore
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062901
.
27.
Clark
,
X. K.
,
1968
, “
Transient Pressure Testing of Fractured Water Injection Wells
,”
J. Pet. Technol.
,
20
(
6
), pp.
639
643
.
28.
Gringarten
,
A. C.
,
Ramey
,
H. J.
, and
Raghavan
,
R.
,
1975
, “
Applied Pressure Analysis for Fractured Wells
,”
J. Pet. Technol.
,
27
(
7
), pp.
887
892
.
29.
Cinco
,
L. H.
,
Samaniego
,
V.
, and
Dominguez
,
A.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
Soc. Pet. Eng. J.
,
18
(
4
), pp.
253
264
.
30.
Cinco
,
L. H.
, and
Samaniego
,
V. F.
,
1981
, “
Transient Pressure Analysis for Fractured Wells
,”
J. Pet. Technol.
,
33
(
9
), pp. 1749–1766.
31.
Xuefeng
,
Q.
,
Lili
,
L.
,
Chunxia
,
Q.
,
Jiangshan
, and
Wenxiang
, and
F.
,
2014
, “
The Tight Sandstone Reservoir Geological Modeling of C7 in An83 Well Block
,”
Electron. J. Geotech. Eng.
,
19
, pp.
2791
2798
.http://www.ejge.com/2014/Ppr2014.269mar.pdf
You do not currently have access to this content.